
Chapter 5 

Annuities-Certain and their  
Value at Fixed Rate 

5.1. General aspects 

From now on we will consider problems that more frequently come into the 
financial practice, solving them in light of given theoretical formulation and on the 
basis of the financial equivalence principle following a prefixed exchange law. 

 
The aforementioned principle was applied in Chapter 4 where, referring mostly 

to complex financial operations evaluated with exchange laws at fixed rate (i.e. 
constant in time; we can thus talk – as already mentioned – of flat structure rates, as 
in the regimes described in Chapter 3), their values V(t) and also reserves M(t) and 
W(t) are found at a generic time t. We stressed there the importance of fair 
operations, such that, if the exchange law is strongly decomposable, t, we obtain 
V(t) = W(t)-M(t) = 0. 

 
In this chapter we will consider the application of the correspondences in both 

sides between flows given by the operation and funds given by their capital values, 
V(t) at a given time t, all in a specific case: that of operation ˆ O  constituted by a 
finite or infinite sequence of dated amounts with the same sign, that for one of the 
contracting parts is positive (and then they are incomes). Assuming, as it is used, an 
exchange law such that the equivalent amounts at different times always keep the 
same sign in the given temporal interval, the capital value V(t) of ˆ O  at whichever 
time t has the same sign as the concordant transactions and therefore ˆ O  can never 
be a fair operation, whichever exchange law parameters are used. However, a fair 
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operation O* is obtained by adding to ˆ O  the supply made by the opposite of such 
capital value paid at the evaluation time.  

 

We will usually call an annuity the particular unfair operation ˆ O , formed by a 
sequence of dated amounts with the same sign and made at equal intervals in time1. 
We will use the following definitions when referring to an annuity: 

– period = constant temporal distance between two consecutive payments, 
usually of one year, or a multiple or sub-multiple of this; 

– frequency = inverse of period, i.e. the number of payments per year; 

– interval = time separating the beginning of the first period and the end of the 
last; 

– term = length of the interval; 

– installment = payment amount, constant or varying. 

In addition, we will distinguish the annuities in the following ways: 

– annual, when the period is one year, standard unit measure of time, or 
fractional or pluriannual, if the period is a submultiple or a multiple of one year; 

– annuity-due, when the payment is made at the beginning of each period, or 
annuity-immediate, when it is made at the end of each period; a case of theoretical 
interest is that of continuous annuity, when the period tends towards zero and we 
have a continuous flow of payments; 

– certain, if we assume that the established payments will be made with 
certainty, or contingent, if we assume that the payment of each installment is made 
only if a given event occurs2; in this part we will not consider contingent annuities 
and thus “certain” annuities will always be implied.  

– constant or varying, referring to the installment sequence; 

– temporary or perpetuity, if the term is finite or not. 
 
EXAMPLE 5.1 

1) The monthly payments for the rent of real estate can be considered as a 
certain annuity-due which is constant (or varying), monthly and temporary. 

                                   
1 Originally the meaning of the word “annuity” was restricted to annual payments, but it has 
been extended to include payments made at other regular intervals as well. 
2 For a discussion on contingent annuities, which we consider in the field of “actuarial 
mathematics”, it is necessary to have knowledge of basic probability calculus. 
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2) The future wages of a worker is a contingent annuity (considering the 
possibility of leaving the job due to death, invalidity, resignation, etc.), varying (due 
to the variation of wage), weekly- or monthly-immediate and temporary. 

3) The “landed rent” of a cultivated field is, from an objective viewpoint (i.e. not 
considering the change of owners), a certain annuity, varying for perpetuity. 

4) Another example of annuities is the payment of bills, accommodation 
expenses, etc. 

 
In the problems of evaluation and negotiation we are interested in the annuity 

capital value even more than the annuity itself. This is, on the basis of what we have 
stated above, the amount that, associated with the evaluation time, gives rise to the 
indifferent supply3 to the sequence of concordant supplies that form the annuity. 
The value thus depends on the evaluation time and the financial exchange law. 

 
Usually this time is at the end of the annuity interval or at its initial time but it 

can even be before this. In the first case the capital value is called final value or 
accumulated value; in the second case initial value or present value of a prompt 
annuity; in the third case present value of a delayed annuity

4
. 

 
As concerns the exchange law, if the annuities are multi-year, a compound law, 

with a given interest conversion period and the corresponding rate per period, is 
usually used. For a short-term annuity, we usually use a simple interest law for the 
evaluation of the final value and a simple discount law for that of the initial value. 
Such financial laws are uniform, thus the annuity interval can always be translated, 
without changing the results5.  

                                   
3 Or “equivalent” in the sense specified in Chapter 2, if the exchange law is strongly 
decomposable (s.dec.). 
4 We usually distinguish between “annuity” and “delayed annuity” according to the 
comparison of their initial times and their evaluation times, something that does not take the 
payment characteristics into consideration. We observe that if we limit ourselves to the 
preceding choices, the evaluation time is never inside the annuity interval, so that in order to 
calculate the capital value, consideration of a complete exchange law, union of accumulation 
and, possibly conjugate, discount laws is not needed. In fact, it is enough to use a discount 
law for the present value and an accumulation law for the final value. Therefore, the weak 

decomposability of such laws is enough to obtain the equivalence between ˆ O  and its final or 
present value at the evaluation time.  
5 Sometimes a distinction between simple annuity, when the conversion and payment period 
coincide, and general annuity, when such periods do not coincide, is introduced; but they are 
usually commensurable (i.e. the ratio of their length is a rational number). Furthermore, a 
general annuity can always be led back to a simple annuity using equivalent rates to obtain a 
conversion with the same period as the annuity rates (see Hummel, Seebeck (1969)).  
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In Chapter 6, when discussing amortization and accumulation, we will consider 
in applicative terms the step, briefly considered above, from a unfair operation ˆ O  of 
an annuity to a fair operation O* associated with it. It will be enough to add to ˆ O  a 
supply given by the couple of numbers: [a time extreme of the annuity interval; the 
opposite of the value at such time]. Due to the financial equivalence between the 
whole of the supplies of an annuity between T1 and T2 and its initial value in T1 or 
final value in T2, we can conclude that: 

a) the annuity payments are installments of a debt amortization equal to their 
initial value V(T1), in the sense that if a loan of amount V(T1) has been made, the 
annuity supplies amortize the debt i.e. pay it back both for the principal and for the 
charged interest, if the discount law applied to the annuity corresponds to the law 
that rules the loan; 

b) the annuity payments are installments for the accumulation of a capital (i.e. 
funding) equal to their final value V(T2), in the sense that, depositing the dated 
amounts of the annuity into a profitable account according to the applied 
accumulation law, such an account accumulates (considering also the accrued 
allowed interests) a credit that will reach in T2 the value V(T2). 

5.2. Evaluation of constant installment annuities in the compound regime 

5.2.1. Temporary annual annuity 

For simplicity, choosing as t=0 the beginning of the interval, let us now calculate 
the initial value (IV) at the annual rate i of a temporary annual annuity – thus 
featured in the interval [0,n] by payments at the beginning or end of each year, 
according to the annuity being due or immediate, which is defined as the sum of the 
present values of each payment, and indicated with the symbol V0 or 0V . Let n be 
the length of the annuity and thus the number of payments. 

 
In the specific case of a unitary annual annuity (i.e. with unitary installments) 

which is temporary, or respectively immediate or due, for the IV we use the 
symbols an |i or an|i

6, referring to annual periods and rates, and by definition  

                                   
6 Such symbols, separately for immediate and due case, depend on the duration (or number of 
periods) n and the per period equivalent rate i. The diaeresis denotes annuity-due. The results 
of suitable calculations of these values for the immediate case (those for the due case can be 
calculated using the previous case: see e.g. (5.2)) and of other quantities are scheduled in 
specific “financial tables”, depending on the most important parameters. However, the 
increasing availability of very good pocket scientific calculators enables exact calculations of 
the value of any parameters, thus making tables obsolete. 
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an |i:= [(1+i)
-1

 + (1+i)
-2

 + ... + (1+i)
-n

]            (5.1) 

an|i := [1 + (1+i)-1 + (1+i)-2 + ... + (1+i)-(n-1)] = (1+i) an |i = 1 + an-1 |i  

According to the equivalence principle, it is immediately verified that, as  
v = (1+i)-1 = annual discount factor, d = 1-v = iv = annual discount rate, we obtain7: 

an |i = 
1 (1 i) n

i

1 vn

i
; an|i  = 

1 (1 i) n

d

1 vn

d
 (5.2) 

and thus, for the annuity-immediate with installment R and annuity-due with 
installment R , the IV are respectively: 

V0  = R an |i ; 0V  = R an|i  (5.3) 

Due to the observation at the end of section 5.1, in (5.3), R is the constant 
installment of delayed amortization in n years at the annual rate i of the debt V0, ( R  
is for the advance amortization of the debt 0V ). 

Exercise 5.1  

Calculate the amount to be paid today as an alternative to 5 payments of €1,000 
with a deadline at the end of each year, with the annuity starting today, and adopting 
a compound annual exchange law at the annual delayed interest rate of 8.25% 

A. We apply (5.3) using: R = 1,000; i = 0.0825; n = 5. 

The following is obtained 

V0 = 1,000 (1 – 1.0825-5)/0.0825 = 3,966.54 

                                   
7 This and the following formulations can be proved algebraically, but we prefer to use 
financial arguments, as we consider them to be more appropriate here. Thus, to obtain (5.2), 
recalling that it is indifferent to defer an income if in the meantime the interest is accrued 
according to the prefixed accumulation law, using the compound regime and valuing at time 
0, it is indifferent to receive the amount S at time 0 (present value = S) or receiving it at time 
n (present value = S vn) with the addition of the delayed annual interests, forming an annual 
annuity-immediate for n years of installment Si (present value = Si an |i ) or advance, forming 
an annual annuity-due for n years of installment Sd (present value = Sd an|i ). Thus, S, the 
financial equivalences: S = S vn + Si an |i  ; S = S vn + Sd an|i , and thus (5.2) can be obtained. 



152     Mathematical Finance 

If we are interested in the final value (FV) Vn (or nV ) of the annual temporary 
annuity-immediate or -due, defined as the sum of the accumulated values in n of 
each payment, due to the decomposability of the compound law, it is equivalent to 
accumulating each payment until time n and adding the results or discount each 
payment until time 0 and accumulating for n years the sum of the obtained values. 
Therefore,  

Vn   =   (1+i)n V0      ;     nV    =   (1+i)n 
0V  (5.4) 

Therefore, indicating with sn |i  and sn|i  the final value of unitary temporary 
annual annuity, respectively -immediate and -due, and using the same argument as 
for the IV, by definition the following is the result: 

sn |i := 1 + (1+i) + (1+i)2 + ... + (1+i)n-1 
(5.5) 

  sn|i := (1+i) + (1+i)2 + ... + (1+i)n
 

and the following is easily obtained8 

n|is  = (1+i)n an |i
 = 

(1 i)n 1
i

 (5.6) 

n|is  = sn+ 1 |i   – 1 = |n ia  (1+i)n  =  (1 i)n 1
d

sn |i  

while for annuity-immediate with installment R or -due with installment R  it results 
in 

Vn  =  R sn |i        ;    nV   =  R  n|is  (5.7) 

                                   
8 The last terms of (5.6) can be obtained from financial equivalence valuing at time n the 
amount S paid in 0 or the same amount paid in n plus the annual delayed or advance interest, 
between 0 and n and obtaining the equalities: S (1+i)n = S + Si sn |i  ; S (1+i)n = S + Sd  sn|i . 
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In (5.3) R is the constant delayed installment of the accumulation of Vn in n 
years at the annual rate i whereas R  is the constant advance installment of the 
accumulation of nV . 

 
The following symbols are frequently used and can be found on tables for the 

most common values of n and i: 

n |i = 1/ an |i ; n|i  = 1/ n|ia  ; n |i = 1/ sn |i  ; n|i  = 1/ n|is . (5.8) 

These form the coefficient to be applied to the IV or FV of an annuity-
immediate or annuity-due to obtain the constant installments. In fact, obtaining R 
and R  from (5.3) and (5.7), it follows that 

R   =V0 n |i ; R   = 0V  n|i  ; R  = Vn n |i  ; R   = nV n|i    (5.8') 

The values in (5.8') thus give the amortization installment of the debt V0 and the 
delayed or advance funding installment of the capital Vn

9. 

Calculation of rate and length 

Considering only the annuity-immediate case, (5.3) is a constraint between the 
quantities V0, R, n, i, which enables expression one to be dependent on the other 
three. The first parts of (5.3) and (5.8) explain V0 and R. The calculation of i is 
reduced to that of the IRR (see Chapter 4) of the operation O* = ˆ O (0, V0)U  
defined in section 5.1. Sometimes more needs to be said about the calculation of the 
implicit length n. 

 
From the 1st part of (5.3) we obtain, recalling (5.2): 

    

V0
R

1 (1 i) n

i
    i.e.     1-

iV0
R

= (1 + i)-n  = e- n 
  

Considering the natural logarithm and (3.30') we obtain the implicit length:  

                                   
9 The comparison between (5.8) and (5.8') makes it possible to give a financial meaning to 
the values n |i , n|i , n |i , n|i . They are, in order, the constant delayed and advance 

installments of amortization of the unitary debt and of funding of the unitary capital. 
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n

ln 1
iV0

R
 (5.8") 

Solution (5.8") is positive, because 0 1 iV0 R 1 , but usually it is not a 
natural number. We can consider the natural n0 that better approximates the 
solution, again calculating (if desired) the IV as a function of n0. 

 
Between the quantities (5.8) there are the following relations, which have a 

relevant financial meaning10: 

;i  dn|i n|i n|i n|i   (5.9) 

It is useful to consider that (as can be deduced from their algebraic values and 
financial meaning): 

– an |i is an increasing function of n and decreasing of i;

– n |i  is a decreasing function of n and increasing of i; 

– sn |i  is an increasing function of n and increasing of i; 

– n |i is a decreasing function of n and decreasing of i. 

The same dynamics apply to the annuity-due values. 
 
We have examined, so far, the evaluation of annuities carried out at the 

beginning of the interval (and thus, as already specified in section 5.1, we talk about 
IV and prompt annuities). Furthermore, we obtain present values of delayed annuity 
(PVDA) if the evaluation time precedes the beginning of the interval. Putting it in -r 
we have a deferment, and then an increment, of the discount times of all payments, 
of r years (r can also be not integer). Therefore, indicating with r / an |i  or /r an|i  the 
PVDA in the case of unitary temporary installments, annuity-immediate or annuity-
due, it is obvious that 

                                   
10 Equation (5.9) can be easily deduced algebraically but it can be justified financially with 
an equivalence between amortizations: for the debtor it is equivalent to paying, at the end or 
beginning of the year, to the creditor the constant amortization installment referred to as the 
unitary debt (for n years at rate i) or to paying only the interest amount, i or d, and 
accumulating in n years the unitary capital to pay back to the creditor in only one payment at 
the end. In the alternative, the annual constant payments must be equal. Thus, equation (5.9) 
is justified. We will come back to this in Chapter 6 when considering “American” 
amortization. 
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r / an |i  = vr an |i = 
vr v r n

i
; /r an|i  = vr an|i  = 

vr v r n

d
   (5.10) 

and in the case of constant installment R of an annuity-immediate or R  of an 
annuity-due, we obtain: 

 / 0 / / 0 / ; r r r rV R a V R an|i n|i           (5.3') 

5.2.2. Annual perpetuity 

 Let us now consider annual perpetuity, observing that, in the case of constant 
installments, the FV is not considered because it goes to infinity11. However, the IV 
are finite and are obtained using n  +  in the previous formulae from (5.1) to 
(5.3). It follows that12 

a |i = 1/i, a |i  = 1/d ; V0  = R/i, 0V  = R /d (5.11) 

and, for the PVDA:  

r / a |i = vr/i; /r a |i  = vr/d; r /V0  = R vr/i; / 0r V  = R vr/d   (5.11') 

Exercise 5.2  

1) Calculate the initial and final value of an annual annuity-due with constant 
installment R  = €150, annual interest rate i = 8.55% = 0.0855, length n = 17. 

A. Using (5.3) we obtain 

0V  = 150 + 150 (1 – 1.0855
-16

)/0.0855 = 150 (1 + 8.5484723) = 1,432.27 

In addition, we obtain d = 0.0855/1.0855 = 0.0787656 and, applying (5.6), 

 nV R sn|i  = (1.085517 – 1)/0.07876555 = (1.085518 – 1)/0.0855 = 38.515980 

and thus 

                                   
11 It should be calculated in the compound regime, at whatever non-negative rate, as the sum 
of the elements of a geometric sequence with ratio  1, which is positively diverging. 
12 The expressions in (5.11), with their formal simplicity, are of fundamental importance in 
the accumulation problems of perpetual incomes of lasting assets. 
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17V  = 150. 38.5159796 = 5,777.40 

(5.4) is soon verified, resulting in 

(1.0855)171432.27 = 4.033732164 1432.27 = 5,777.40 

2) An estate can be bought with an advance of €5,600 and a loan that involves 
15 annual delayed installments of €850 each. Calculate the equivalent price in cash, 
if the annual loan rate is 6%. 

A. Let P be such a price, and applying (5.2) the result is:  

P = 5600 + 850 (1-1.06-15)/0.06 = 5600 + 8255.41 = 13,855.41. 

3) A reserve fund of a company at the closing balance is €156,500. If we want to 
increase it in 5 years to the level of €420,000 through constant earmarking at the end 
of each following year in a savings account at the compound annual interest of 6%, 
calculate the amount of each annual earmarking, assuming they are constant. 

A. Denoting the earmarking by C, it is given by 

C = (420,000 – 156,500) 5|0.06 = 263,500 0.06/(1.065 – 1) = 263,500.0.17739640  
= €41,743 

4) Verify (5.9) for the values n = 15, i = 0.09 

A. The first formula gives rise to the equality: 0.12405888 = 0.03405888 + 0.09 
and the second to: 0.11381549 = 0.03124668 + 0.08256881, obtained from the 
previous one multiplying by v=1/(1 + i) = 1/1.09 = 0.91743119.  

5.2.3. Fractional and pluriannual annuities 

In sections 5.2.1 and 5.2.2 we considered the evaluation in the compound 
regime, with annual conversion of interest, of annuities with annual installments. 
The same formulae can be used for m-fractional annuities i.e. with installments of 
frequency m (usually m = 2, 3, 4, 6, 12, 52, 360 for the usual fraction of a year, even 
if only the constraint m-1  follows from the definition) for the evaluation of 
which we use the m-fractional conversion of interest and then it is given the delayed 
per period rate i1/m for 1/m of a year or the intensity j(m) = m i1/m. It is sufficient to 
use in such formulae i1/m instead of i and as a temporal parameter the number of 
payments, then changing the unit measure of time. For the pluriannual annuities 
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with a payment every p years it is sufficient to use m = 1/p and instead of i the p-
annual equivalent rate, given by ip = (1+i)p-1  13. 

 
In fact, we recall that in a compound accumulation process we obtain the same 

return with an annual conversion at rate i or with the m-fractional conversion at the 
rate per period i1/m if the two rates are equivalent, i.e. linked by (3.26). 

Temporary fractional annuities 

The IV at the delayed rate i of an m-fractional annuity with length n  +  (i.e. 
an annuity such that the annual amount R is fractionated into the annual interval in 
m equally spaced installments, the amount of which is R1/m = R/m, so the annuity 
has period 1/m) can be evaluated, distinguishing the annuity-immediate from the 
annuity-due case, through formulae analogous to (5.3), obtaining 

V0
(m) R1/ mamn |i1/m

 ; 
1/m

(m)
1/ mn|i0 mV R a  14      (5.12) 

In the specific case of an annuity unitary m-fractional (i.e. with installments of 
amount 1/m so as to have a unitary annual amount) temporary, respectively annuity-
immediate or annuity-due, for the IV we use the symbols a(m)

n|i  or n|ia  and, 
analogously to (5.2), we obtain the following formulae 

  
an|i

(m) = 
1 vn

j(m)
; (m)

n|ia  = (1+i)1/m
 
an|i

(m) = 
1 vn

(m)
   15    (5.13) 

In general, with an annual total R, (5.12) can be rewritten, using (5.13), as 

V0
(m) R1/ mamn |i1/m

; 
1/m

(m)
1/ m mn|i0V R a            (5.12') 

                                   
13 Given that these transformations leave the period of the annuity and the conversion 
unchanged, we are still in the case of basic annuities, specified in footnote 5. 
14 In the fractional annuity the number of payments nm can be large and, if we use financial 
tables, it can be higher than the maximum in the table. In such cases, the following 
decomposition can be useful: an +p | i  = an | i  + (1+i)-n ap | i , which enables calculation of the 1st 

member when the length n+p goes beyond the limit of the table, provided that (n.p) is 
whichever duration included in the table. 
15 Proceeding analogously to footnote 7, (5.13) can be obtained taking into account the 
financial equivalence between the amount S in 0 or the same amount in n adding the delayed 
or advance interest paid with frequency m. Their annual total is thus, respectively mSi1/m or 

mSd1/m. Therefore, the equivalences give rise to the equations: S = S j(m) an |i
(m)+ S (1+i)-n,  

S = S (m) an |i
(m) + S (1+i)-n, and thus (5.13). 
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The step from (5.12) to (5.12') is justified observing that  

V0
(m) R

m

1 (1 i1/ m ) mn

i1/ m

R
1 (1 i) n

j(m)
 

(m)
0V  = R

m
 
1 (1 i1/ m ) mn

i1/ m
(1 i1/ m )  = R 

1 (1 i) n

(m)
 

To obtain the FV of a temporary m-fractional annuity for n years, annuity-
immediate or annuity-due, given the decomposability of the compound laws it is 
enough to accumulate the IV during the interval of the annuity. If the annual total is 
unitary, the FV, indicated in the two cases with 

 
sn|i

(m) and (m)
n|is , are 

  
sn|i

(m)   =  (1+i)n 
  
an|i

(m)  ;  (m)
n|is   =  (1+i)n (m)

n|ia          (5.6') 

In general, with annual total R, analogously to (5.4'), the FV are given by 

  Vn
(m) =  R 

  
sn|i

(m)  =  R (1+i)n
 
an|i

(m)  =  (1+i)n 
 V0

(m)         (5.4') 

(m)
nV  =  R (m)

n|is  =  R (1 + i)n (m)
n|ia  = (1+i)n (m)

0V  

Exercise 5.3 

Calculate the IV and FV of the annuity formed by the income flow with monthly 
delayed installment of €650 for 10 years at the nominal annual rate 12-convertible 
of 9%. 

A. We have i1/12 = 0.0075, i = 0.0938069, R = 7,800, and then 

  V0
(12) = 

1201 1.0075
650 650 78.9416927 51,312.10

0.0075
     , or 

10
(12)

0

1 1.0938069
7,800 7,800 7,800 6.5784744 51,312.10

0.09
V  a(12)

10|i  

In addition:     Vn
(12)  = 5,1312.10.1.0075120 = 125,784.28  
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Applying footnote 14 and assuming there is a financial table with a maximum 

length of 100, choosing the length 70 and 50, with 70+50=120, this results in 

a120 |0.0075 a70 |0.0075 1.0075 70 a50 |0.0075 = 54.3046221 + 

0.59271533.41.5664471 = 78.9416925, 

and thus V0
(12)

 = 51312.10, i.e. the same value as previously. 

If, with the same data, the installments are in advance, this results in: d1/12 = 
0.0074442;  = 0.08933 and 

(12)
0V =7,800 (12)

10|0.0938069
a  =

101 1.0938069
7,800

0.08933

 

  = 7,800.6.6278135 = 51,696.96 

(12)
10V  = 51696.96 .1.0075120 = 126,727.71 

For completeness, let us mention briefly annuities m-fractional delayed for r 
years, for which the PVDA are obtained multiplying by vr the corresponding IV 
With a unitary annual total we have, with the obvious meaning of the symbols 

  r / an|i
(m)

 = 
 
vran |i

(m)  = vr vn r

j (m)
; 

(m)
/ n|ir a  = (1+i)1/m

 r / an|i
(m)  =

vr vn r

(m)
 (5.13') 

while in general, with installment R/m it is enough to multiply by R the values (5.13'). 

Exercise 5.4 

Using the data in exercise 5.3, calculate the PVDA with 4 years deferment. 

A. The following is obtained:  

  4 / a10 |9.38069%
(12)  = 1.0938069-4

 
a

10 |9.38069%
(12)  = 0.6986141.6.5784744 = 4.5958166 

(12)
10|9.38069%4 /

a  = 1.0938069-4 (12)
10|9.38069%

a  = 0.6986141.6.6278135 = 4.6302842  

Fractional perpetuity 

The IV of the fractional perpetuity are obtained from those for temporary values 
putting n +  and taking into account that in such a case vn 0. If the annual 
total is unitary, we obtain, analogously to (5.11), 
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a |i

(m) = 1/j(m)  ;  ( )
|i
ma  = (1+i)1/m 

 
a |i

(m) = 1/ (m) (5.14) 

while with installment R/m  

  V0
(m)

  =   R 
  
a |i

(m)  =  R/j(m)  ;  
(m)

0V  =  R (m)
|ia  =  R/ (m) (5.14') 

and, for the PVDA the result is16  

  r / a |i
(m)   =  vr/j(m)    ;  (m)

/ |ir a =  vr/ (m)                  (5.15)  

  r /V0
(m) =  R vr/ j(m)    ;  (m)

/ 0r V  = R  vr/ (m) 

Exercise 5.5 

Using the data from Exercise 5.4, calculate the IV and the PVDA of an 
immediate or due perpetuity with flow equal to €5,600/year. 

A. Applying (5.14') for the IV we obtain 

( )
0

mV = 5,600
 
a |9.38069%

(12)  = 
5,600

0.09
  = 62,222.22 

( )
0

mV  = 5,600 (12)
|9.38069%a  = 

5,600

0.08933
 = 62,688.91; 

and for the PVDA discounting we obtain 

                                   
16 A comparison between the formulae shows the intuitive fact that both for annual annuity, a 
fractional annuity and (as we will see) a continuous annuity, the following decomposition 
holds: the IV of a perpetuity is the sum of the IV of a corresponding temporary annuity and of 
the PVDA of the corresponding delayed annuity at the end of the previous one. In the simplest 
case, of a unitary annual annuity-immediate, the result is: a | i= ar | i + r / a | i , following the 
identity: 1/i = (1-vr)/i + vr/i. This splitting up is similar to the juridical splitting with usufruct 
and bare ownership (but in a different meaning as used in Chapter 4). The usufruct is like the 
temporary annuity, whereas the bare ownership is like the delayed annuity, which starts after 
the end of the temporary one. However – unlike what occurs in annuities-certain – the 
splitting up with usufruct and bare ownership leads to uncertain values, since it is linked to a 
random usufructuary lifetime. Therefore, in a random case we calculate mean values 
according to expected lifetime. 
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(12)
4 / 0V  = 0.698614.62222.22 = 43,469.32; 

(12)
4/ 0V  = 0.698614.62688.91 = 43,795.35 

or applying (5.15)  

(12)
4/ 0

0.698614
5,600

0.09
V   = 43469.32; (12)

4/ 0

0.698614
5,600

0.08933
V   = 43,795.35 

Continuous annuities 

Let us briefly consider continuous annuities (temporary or perpetuities, prompt 
or delayed), characterized by a continuous flow of payments, which we assume here 
to be constant. They can be considered as a specific case of fractional annuities, for 
m  + . For uniformity of symbols and easier comparison we assume the flow of R 
per year, where R is also the amount paid in one year. Since the period goes to 0, the 
distinction between annuity-immediate and annuity-due does not make sense.  

Indicating with 
    
an|i

( )  the IV, with 
  
sn|i

( )  the FV (only if n< ), with r/    
an|i

( )  the 
PVDA of the unitary annuity (R=1), taking into account (5.13), (5.13'), (5.14), 
(5.15) and the convergences (m)  j(m) when m  + , using these limits the 
following is easily obtained: 

  
an |i

( )
 = 

1 vn

; 
  
sn |i

( ) = 
(1 i)n 1

; 
 r / an |i

( ) = 
vr v r n

;     (5.16) 

  
a |i

( )  = 
  

1
; 
  r / a |i

( ) = 
vr

  

Exercise 5.6 

Using the data in exercise 5.4, calculate the values in (5.16) of the unitary 
perpetuities. 

A. We have: i = 0.0938069 and  = ln 1.0938069 = 0.0896642; thus the 
following is obtained:  

 
a

10 |i
( )

 = 6.603113; 
 
s
10 |i
( )

 = 16.186588; 
 4 /

a
10 |i
( )

 = 4.613027; 

  
a |i

( )

 = 11.152723;  4 / a |i
( )

 = 7.791450. 
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If the annuity has flow R, it is enough to multiply by R the values of (5.16)17. 

Pluriannual annuity, temporary or perpetuities 

We will now comment briefly on pluriannual annuities, characterized by 
constant installments, annuity-immediate or annuity-due, equally spaced over p 
years, therefore with frequency 1/p. They find application, for example, in the 
evaluation of the charges due to industrial equipment renewal.  

 
If such annuities are temporary, it is necessary that n = kp (where k  is the 

number of installments). Thus, indicating with ip = (1+i)
p
-1 = i sp |i  the p-annual rate 

equivalent to i, to obtain the capital value it is enough to assume an interval of p 
years as the new unit measure and apply the formulae for the annual annuities using 
i1/p as the rate and k as the length. 

 
In more detail, considering as unitary (referring to the annual amount) p-annual 

annuity that with installment Rp = p, we indicate with 
 
an |i

(1/p)  or 
(1/p)
n|ia  the IV of the 

temporary one with length n, -immediate or -due. It thus follows that: 

  
an |i

(1/p) =  p 
1 (1 i p) k

i p

 = p 
1 (1 i) n

(1 i) p 1
 =  p p |i  < an |i      (5.17) 

(1/p)
n|ia   =   (1 + i)p 

  
an |i

(1/p)     =   p 1 (1 i) n

1 (1 i) p
 =  p an |i p |i  > an |i 

                                   
17 The value of continuous annuity can be calculated analytically in the compound regime 
using the integrals of continuous flow, which are discounted or accumulated. If the flow is the 
constant R, the results are:  

 
R an | i

( )  =   R
1 vn

 ;    
 
R sn|i

( )  =
 

R e0
n (n  t )

dt   = R
e  n 1 ; 

 
R r /an |i

( )   = 
  

R e0
n  t

dt  =  
 

R er
r n  t

dt  =  R
e r e (r n )

; 

  
R a | i

( )   =  
  

R e0

 t
dt  =

R ; 
 
R r /a | i

( )   =
 

R er

 t
dt  = R

e  r
, 

i.e. the values obtained from (5.16). With varying flow   (t) , the IV of a temporary annuity is 

given by 
  

 (t) e0
n  t

dt , with obvious modification for the other cases. 
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and, in general, the IV of the analogous annuity with installment Rp-immediate or 
Rp-due are  

    V0
(1/ p)  = Rp 

    

1 (1 i) n

(1 i) p 1
 = Rp an |i p |i;         (5.17') 

(1/ )
0

pV = Rp 
    

1 (1 i) n

1 (1 i ) p
 = Rp an |i p |i 

Multiplying (5.17') by (1+i)n the FV of such annuities are obtained. Multiplying 
them instead by (1+i)-r the PVDA of the analogous annuity p-annual temporary 
delayed for r years are obtained. Using instead n  + , the IV of the analogous p-
annual perpetuity are obtained. For the unitary IV it is found that 

  
a |i

(1/p) = 
  

p

(1 i) p 1
 =  

1
j(1 p)

            (5.18)  

(1/ p)
|ia  = 

  

p

1 (1 i) p
 =  

1
(1 p)

 = 
 
a |i

(1/p)
 + p 18 

and it is generally sufficient to substitute Rp to p, obtaining:  

    V0
(1/ p)  = 

    

Rp

(1 i) p 1
 Rp a |i p |i           (5.18') 

(1/ )
0

pV  = 
    

Rp

1 (1 i) p
 Rp a |i p |i 

                                   
18 Observe that, as for (5.14), the values in (5.18) represent the reciprocal of the intensity per 
period on a length of p years. In the second part of (5.18), the last term is justified noting that 
the annuity-due value is obtained from the annuity-immediate value adding the initial Rl/p = p 
and subtracting nothing due to perpetuity. 
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and also: (1/ )
0

pV = 
  V0

(1/p) + R. 

Exercise 5.7 

1) Calculate the IV of a five-yearly annuity at the annual rate of 7%, -immediate 
or -due, with a length of 20 years or perpetuity, with delayed installments of 
€58,500. 

A. By applying formulae from (5.17) to (5.18') the following is obtained: 

– in the temporary case: 

(1/5)
20|0.07

a  = 5 1 (1.07) 20

(1.07)5 1
 = 9.2110032 

  V0
(1/5) = 58,500 1 (1.07) 20

(1.07)5 1
 = 107,768.74 

(1/5)
20|0.07

a  = 5 
20

5

1 (1.07)

1 (1.07)
 = 12.9189075 

(1/5)
0V  = 58,500 1 (1.07) 20

1 (1.07) 5
 = 151,151.22 

– in the perpetual case: 

  
a |0,07

(1/5)   =  5

(1,07)5 1
  = 12.4207639    ;   

 V0
(1/5)  =  58500

(1.07)5 1
 = 145,322.92 

 
(1/5)

|0,07a   =  5

1 (1,07) 5
 = 17.9189075   ;   (1/5)

0V   =  58500

(1.07)5 1
 = 203,822.92 

2) For the functioning of a company the owner buys equipment that must be 
replaced, due to wear and obsolescence, every 5 years. A horizon of 20 years is 
established for the company’s activity, for which the return rate is 7.45%. The mean 
cost of the equipment is evaluated in €255,000. On the basis of such estimations, 
calculate the IV for the purchase expenses of such equipment for the whole time 
horizon. 

A. The IV asked for is that of a 5-year temporary annuity-due for 20 years, and 
according to (5.17') it is 

(1/5)
0V  = (1/5)

20|0.0745
a  = 255,000 1 (1.0745) 20

1 (1.0745) 5
 = 255,000.2.5259699 = 644,122.34 
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3) A forestry company wants to buy a wood, the income of which follows the 
periodic cutting down of the trees and use of the wood, with spontaneous 
reforestation, at a price which, according to the principle of “capitalization of 
income”, is given by the present value, at a rate corresponding to cost-opportunity, 
of future profits. Supposing that:  

– the trees are cut down every 12 years; 

– costs and returns between the periods are compensated; 

– the profit due to each harvest is €55,000; 

– the evaluation rate is 6.20%; 

calculate the price offered by the company, in the alternative hypotheses that 

a) the trees have only just been cut down; 

b) all the trees have an age of 7 years;   

c) all the trees have an age of 12 years. 
 
A. In the given problem the return can be considered perpetual19. Therefore, the 

price P following the accumulation of the profit (then the IV of the annuity of future 
returns) is obtained as follows: 

a) P =Pa is the IV of the 12-year annuity-immediate with constant installment 
Rp = 55,000:  

Pa = 
  

R12

i12
 =  

55000

1.06212 1
 = 51,973.51  

b) P =Pb is the PVDA of a 12-year annuity-due delayed for 5 years, with 
constant installment Rp = 55,000:  

Pb = (1+i)-5

  

R12 (1 + i12)
i12

 =  
55000 1.0627

1.06212 1
 = 70.210,91 

c) P =Pc is the IV of a 12-year annuity-due with constant installment Rp = 55,000:  

                                   
19 A strong limitation for the meaning of this calculus, and all those concerning perpetuities 
with constant installment, follows the unrealistic hypothesis of periodic constant profits in an 
unlimited time. Furthermore, if we suppose profit changing every p years in geometric 
progression, i.e. varying with constant rate, then – as we will see in the case of annuity with 
varying rates – Fisher’s equation permits exact calculation by means of constant annuities, 
which are equivalent to those varying in geometric progression, if one assumes a new 
evaluation rate as a function of the given one and of the one in progression. 
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Pc = 
  

R12 i12

1 i12
 =  

55000 1.06212

1.06212 1
 = 106,973.51 

4) A field with poplars is bought by a private person just after the harvest and 
following reforestation. He leases the field to a forestry company for 4 productive 
cycles; if the cut is every 8 years, the length is 32 years. The rent on the basis of 
market prices is €43,500 to pay after each cut, with the tenant bearing the cost of 
reforestation. Calculate the IV of such a contract at the annual evaluation rate of 
4.5%. In addition, in the hypothesis that the owner is able to obtain from the tenant 
the same total amount, but divided into annual advance installments, calculate the 
percentage increments of the contract value. 

A. The IV of the standard contract is that of an 8-year temporary annuity-
immediate for 32 years; thus, according to (5.17'),  

  V0
(1/8) = R8

-32
(1/8)
32|0.045 8

1-1.045
43,500

1.045 1

 

a     = 77,858.22 

The IV 
  
ˆ V 0

(1/8) of the contract is that of an annual annuity-due, temporary for 32 
years, with installment R8/8. Therefore, using d = 0.0430622, we obtain  

(1/8)8
32|0.0458

R
a  = 5,437.50

321 1.045

0.0430622
= 5,437.50.17.5443913 = 95,397.63 

and thus the percentage increment is  

100 

 

ˆ V 0
(1/8) V0

(1/8)

V0
(1/8)

 = 22.527 % 

5.2.4. Inequalities between annuity values with different frequency: correction factors 

We have seen that, in relation to all the unitary annuities considered so far, by 
changing frequency their IV are in inverse relation to the corresponding per period 
interest or discount intensities. Therefore, denoting by j p  and p  the p-annual 
interest and discount intensities and by m the frequency of the fractional annuity, 
given using the compound regime we  obtain: p  < d < (m) <  < j(m) < i < 
j p , the following inequalities hold: 

(1/p)
|ian  > 

n|ia  > 
(m)
|an i  > 

 
an |i

( )  > 
 
an |i

(m) > 
 
an |i  > 

 
an |i

(1/p) ; (n  )      (5.19) 
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Analogous inequalities hold for the PVDA with same deferment r and for the 
FV of temporary unitary annuities. 

 
Formulae shown in section 5.2.3 enable direct calculation of the capital value of 

non-annual annuities. Furthermore, it can be convenient to use correction factors to 
apply to the IV or to the installments of annual annuities, if these elements are easily 
available, to obtain, by multiplying, the IV or the FV or the equivalent installments 
of fractional or pluriannual annuities. 

 
The correction factor to go from the IV to the FV of a temporary annuity for n 

years of whichever type is, in all cases, (1+i)n and it is the reciprocal for the inverse 
transformation.  

 
More complex are the factors to go from annual annuities to fractional or 

pluriannual ones, and vice versa. 
 
In light of this, we distinguish between two problems on such transformations, 

from frequency 1 (annual case) to frequency m with m-1  (fractional case) or 
m=1/p (pluriannual case with payments every p years). 

 
PROBLEM A.– Transformation of the capital value (at a given time) of the annual 

annuity in that of the annuity with the same length and annual rate but with 

frequency m (or, more generally, with a frequency changing from m' to m") which 

leaves unchanged the total annual payment
20. 

 
PROBLEM B.– Transformation of the installment of the annual annuity in that of 
the annuity with the same length and annual rate but with frequency m (or, more 
generally, with a frequency changing from m' to m") which leaves unchanged the 
capital value (at a given time). 

 
Problem A is solved by applying to the capital value the correction factor fA 

given by the reciprocal of the ratio between the corresponding per period intensities, 
i.e.: 

– for annuity-immediate, fA = i/j(m) > 1 (being i = j(1)), applying it to the value 
of the annual annuity, and fA = j(m’)/j(m”) in general; 

– for annuity-due, fA= d/ (m) < 1 (being d = (1)), applying it to the value of the 
annual annuity21, and fA = (m’)/ (m”) in general. 
                                   
20 Observe that corresponding annuities in the sense of Problem A have installments 
proportional to the periods. 
21 In practice this factor is seldom used, it is preferred to apply the factor (1+i)1/m i/j(m) to the 
value of the annual annuity-immediate. 



168     Mathematical Finance 

Problem B is solved by applying to the capital value the correction factor fB 
given by the ratio between the corresponding per period rates, i.e.: 

– for annuity-immediate, fB = i1/m/i < 1/m, applying it to the annual rate R, and 
fB = i1/m"/i1/m' in general; 

– for annuity-due, fB = d1/m/d >1/m, applying it to the annual rate R , and fB = 
d1/m"/d1/m' in general. 
 

The installments for different frequencies, obtained solving Problem B, can be 
said to be equivalent because they are obtained by proportionality at different rates. 
The argument still holds if a regime different from the compound regime is used. 

 
Reciprocal factors are applied for inverse transformations.  
 
The factors for Problem A are directly justified, on the basis of the expressions 

for the values of the annuities considered in sections 5.2.2 and 5.2.3, observing that 
inverse proportionality exists between such values and the per period delayed or 
advance intensities with corresponding fractioning. Limiting ourselves to the IV of a 
temporary annuity (given that in all other cases the development is the same, 
changing only the numerator of the ratios), by indicating with R the annual total of 
the payments that remains unchanged, we have: 

– for annuity-immediate: R
 
an |i

(m) = R
 
an |i i/j(m); R

 
an |i

(m") = R
(m')
n|ia j(m’)/j(m”); 

– for annuity-due: R (m)
n|ia  = R n|ia  d/ (m) = R

 
an |i

(m) (1+i)1/m = R
  
an |i 

(i/j(m))(1+i)1/m = R
  
an |i i/ (m) (i.e. i/ (m) is correction factor from 

 
an |i to (m)

n|ia ); 

R (m")
n|ia  = R (m')

n|ia (m)'/ (m'') 

 
In the case of pluriannual annuities, it is obvious that the correction factor to go 

from the IV of the annual annuity-immediate to the p-annual one, if -immediate is 
i/j(1/p), if -due is i/ (1/p) . 
 

As concerns the factors from problem B, it is obvious that R1/m is the installment 
of an annuity m-fractional -immediate equivalent (in the sense of the equality of 
capital values) to an annual annuity-immediate with installment R if and only if it is 
the installment of accumulation in one year of the amount R. Thus, the result is: 

R m |i1/m 1/m =

    
R

i1/ m

(1 + i1/ m )m
R

i1/ m

i

22. We obtain an analogous result in general.  

                                   
22 Note that, i1/m/i being the installment to be paid at the end of each mth year to capitalize at 
the end of the year the unitary capital, it is also the correction factor to be applied to the 
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With annuity-due, 1/mR  is the installment of a m-fractional annuity-due 

equivalent to the annual annuity-due with installment R  if and only if it is the 
advance installment of amortization in one year of the amount R . Therefore we 
have: 

1/ 1/ 1/ 1/
1/

1/

(1+ )
   (1+ ) =  

(1+ ) 1

m
m m m m

m m
m

d i d d
R R R R i R

i di1/mm|i
 

We obtain an analogous result in general.  
 
It is obvious that if we transform the annual delayed installment (see footnote 

20), 1/ mR  is the corresponding accumulation advance installment, thus the 

correction factor is i1/ m

i(1 i1/ m )
. 

 
In the case of pluriannual annuity, the correction factor to go from the annual 

delayed installment to the p-annual one, if -immediate, is 
 
sp |i  and, if -due, is 

  
ap |i

23.  

EXAMPLE 5.2.– Using the data in exercise 5.3, as i = 0.0938069 and thus d = 
0.085768, 12 = 0.08933, the unitary annual and monthly annuity are 

  
a

10 |i  = 6.3116048; 
  
a

10 |i
(12)

 = 6.5784744; 
(12)
10|i

a  = 6.6278135; 10|i
a = 6.9035675 

and thus the transformations using the correction factors are easily verified: 

  
a

10 |i
(12) = 

  
a

10 |i0.0938069/0.09   ;  
(12)
10|i

a  = 10|i
a  0.08933/0.0857618 

                                   
delayed annual installment of amortization or accumulation in a prefixed number of years to 
obtain the equivalent delayed m-fractional installment of amortization or accumulation in the 
same number of years. We obtain an analogous result for advance payments, considering the 
fractional installment d1/m/d. 

23 If the annual installment is in advance, it is enough to use respectively sp|i  or ap|i . This 

can be verified directly using m=1/p or simply observing that the annual installment is an 
installment of accumulation in p years of the amount given by the p-annual delayed 
installment or else installment of amortization in p years of the amount given by the p-annual 
advance installment. 
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The unitary continuous annuity is 
 
a

10 |i
( )

 = 6.6032175 and the inequalities are 

verified as 

  
a

10 |i  <  
 
a

10 |i
(12) < 

 
a

10 |i
( )

 < 
(12)
10|i

a  <  10|i
a  

Exercise 5.8 

1) Calculate the IV of the 10-year 4-fractional unitary annuity, both -immediate 
and -due, at the annual rate of 5%, knowing that the annual annuity-immediate value 
is 7.1217349. 

A. By applying the correction factors with given rates and times, we obtain 

  
a

10 |0.05
(12)    =  

 
a

10 |0.05 
0.05

0.0490889
  7.8650458 

(12)
10|0.05

a   =   10|0.05a 0.05 (1.05)1/ 4

0.0490889
  7.9615675 

2) Solve Problem A with data from exercise 5.3, maintaining the annual total of 
€7,800 and calculating the IV of the quarterly annuity-immediate through the 
correction factor on the IV of the monthly one (see Example 5.1). 

A. We have i = 0.0938069 and thus j(4) = 0.0906767; the following is obtained: 

 
a

10 |i
(4)

 = 
  
a

10 |i
(12) j (12)

j (4)
 =  6.5784744 

0.09

0.0906767
 = 6.5293807 

3) Solve Problem A of question 2 but referring to annuity-due. 

A. We have  = 0.0886667 and thus  = 0.08933; the following is 
obtained: 

(4)
10|i

a  = (12)
10|i

0.0893300(12)
 = 6.627813 

(4) 0.0886667
a  = 6.6773945 

4) Solve Problem B with data from exercise 5.3, calculating the monthly 
installment equivalent to the annual one of €7,800, both in the -immediate and -due 
cases. 

A. With delayed installments, using R = 7,800, the result is 

R1/12 = R i1/12
i

 = 7,800 0.0075
0.0938069

 = 623.62. 
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With advance installments, given R  = 7,800 and being d1/12 = 0.0074442 from 
which d = 0.0857618, we obtain 

 1/12R  = 1/12 0.0074442
  = 7,800 

0.0857618

d
R

d
 = 677.04 

5) We have to amortize (in the sense specified in section 5.1) the debt V0 = 
€50,000 over 5 years at the annual rate of 8.75% with delayed annual installments 
R. Calculate the constant installments. To amortize with six-monthly delayed or 
advance installments, calculate the value using correction factors. 

A. The annual installment is R = V0 
 5 |0.0875 = 12,771.35, and thus the six-

monthly equivalent delayed and advance installments are: 

R1/2   =   R i1/ 2
i

  = 12771.35 . 0.4895164 =  6,251.79 

1/ 2R  =  R 
i1/ 2

i (1 i1/ 2)
  =  6251.79 . 0.9589266 =  5,995.00 

6) We have to accumulate (in the sense specified in section 5.1) a capital sum of 
€37,500 in 8 years at the annual rate of 6.15% with constant installments, annual 
delayed or quarterly. Calculate these installments. 

A. The annual installment is R = V8 
 8 |0.0615 = 3,768.50 and then the quarterly 

equivalent delayed or advance installments are 

R1/4  = R i1/ 4
i

 = 3768.50  0.244329 = €921.15 

 1/ 4R  = R 
i1/ 4

i (1 i1/ 4 )
 = 3768.50 . 0.2408129 = €907.50 

Exercise 5.9 

1) We have to amortize, at the annual rate of 6.60%, a debt of 1,450,000 
monetary units (MU) with constant annual delayed installments over 20 years. To 
evaluate the convenience of an amortization with four-yearly installments, solve 
Problem B calculating the equivalent delayed and advance installment. 

A. The annual installment is R = V0 20 |0.066  = 1450000.0.0914786 = 

132643.95. The 4-yearly equivalent delayed and advance installments are  
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R4 = R 4 |0.066  = 132643.95.4.4137115 = 585,452.13 

4R  = R a4 |0.066  = 132643.95.3.4180241 = 453,380.22 

2) Solve Problem B of question 1) in circumstances where the annual constant 
amortization installment is advance. 

A. The annual installment is R  = V0 20|0.066  = 1450000.0.0858148 = 

124,431.48. The 4-annual equivalent delayed and advance installments are 

R4 = R 4|0.066  = 124431.48.4.7050165 = 585,452.16 

4R  = R 4|0.066  = 124431.48.3.6436137 = 453,380.25 

Obviously the values R4 and 4R  are the same in the results of 1) and 2) (except 
for rounding-off errors), due to the decomposability of the financial law used.  

5.3. Evaluation of constant installment annuities according to linear laws 

5.3.1. The direct problem 

We have already mentioned that uniform financial laws, different from the 
compound laws, are sometimes used to evaluate annuities. It is worth studying the 
problem in detail. 

 
As seen in Chapter 2, the need for simplicity leads us to use, for short lengths of 

time, the simple interest law in an accumulation process and the simple discount law 
in a discounting process24. Thus for some applications the following questions are 
relevant: 

– the initial evaluation of an annuity on the basis of the simple discount law; 

– the final evaluation of an annuity on the basis of the simple interest law. 

Although the reader is referred to section 5.5 for the case of general installments, 
we give here the most important formulae for the case of m-fractional annuities 
(owing to short times) with constant installments and, always fixing 0 as the 
beginning of the annuity’s interval, let us give the following definitions: 

– m > 1 = annual frequency of payments; 
                                   
24 For them the exchange factor is linear, and they are called linear laws. Their conjugate, 
with hyperbolic factors, are usually used for indirect problems, e.g. offsetting, etc. 
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– s = total number of payments; 

– i = interest intensity = annual interest rate; 

– d = discount intensity = annual discount rate; 

– R = delayed constant installment; 

– R  = advance constant installment. 
 
If the payments are delayed, the hth amount R is paid at time h/m, and the IV on 

the basis of the simple discount (SD) law at the rate d and the FV in s on the basis of 
the simple delayed interest (SDI) at rate i are given, respectively, by 

0  1 ( 1) / 2V s R d s m  ; R 1+i( -1) / 2sV s s m        (5.20) 

Instead, if payments are in advance, the hth amount R  is paid at time (h-1)/2m, 
and the IV on the basis of the SD law at rate d and the FV in s on the basis of the 
SDI law at rate i are given, respectively, by 

0 R 1-d(s-1) / 2mV s  ;   1 ( 1) / 2sV s R i s m      (5.21) 

Equations (5.20) and (5.21) are obtained from the sum of terms in arithmetic 
progression. More simply, observing that t' = (s-1)/2m is the average length of 
accumulation of the s delayed installments and the average length of the discounting 
of the s advance installments, while t" = (s+1)/2m is the average length of 
accumulation of the s advance installments and the average length of the 
discounting of the s delayed installments, we obtain: 

0 (1 )    ;   (1 )sV s R d  t" V s R i t'           (5.20') 

0  (1  ')   ;    (1  )sV s R d t V s R i t"           (5.21') 

equivalent to (5.20) and (5.21). 

Exercise 5.10 

1) We have to build up a fund of €12,000 with 10 constant delayed or advance 
monthly payments in a saving account at 6% annual in the SDI regime: calculate the 
value of each installment. 
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A. In the case of delayed payments, from the 2nd expression of (5.20) the 
following is obtained 

9
12,000 10 (1 0.06 ) €1,173 59

24
R  /  .  

The difference of 264.10 between the accumulated amount of €12,000 and the 
total payments, which amount to €11,735.90, is due to the interest accrued in the 
fund. In the case of advance payments, due to the 2nd expression of (5.21) the 
installment is 

11
12,000 / 10 (1 0.06 ) €1,167.88

24
R  

2) In a hire purchase the client accepts 10 quarterly delayed payments of €400 
each. If the seller is able to discount the payments at the annual rate of 8% in a 
simple discount regime, calculate the amount obtainable by the seller. 

A. The obtainable amount is equal to the initial value V0 given by the 1st 
expression of (5.20). This results in 

0

11
4,000 1 0.08 3,560

8
V   

The spread of €440 with respect to the total payments of €4,000 is the amount of 
discount, as reward for the advance availability. 

5.3.2. Use of correction factors 

If the SDI law is used with factor u(t) = 1+it and the m-fractional annuity is 
considered with accumulation of interest only at the end of the year, the correction 
factors to be applied to the annual delayed installment R to have the equivalent m-
fractional delayed installment R1/ m  or advance  installment 1/ mR , are obviously 

delayed case: f p
1

m
m 1

2
i

; advance case: fa
1

m
m 1

2
i

  (5.22) 

The correction factor is also the periodic installment for the accumulation of unit 
capital in one year. In fact, considering the temporal interval between 0 and 1, at 
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time 1 the FV V1 of the annual payment is R, while the FV V1
(m )  of the delayed m-

fractional payments is R1/ m m  (for the principal) + R1/ m
m(m 1)

2
i  (for the 

interest); therefore, under the constraint we obtain R1/ m /R  = fp given by the first 
formula in (5.22). With advance m-fractional payments we have 

(m)
1V = 1/

1
(1 )

2mR
m

m i  and the constraint 1V = (m)
1V  implies 1/ /mR R  = fa 

given by the second formula in (5.22).  

5.3.3. Inverse problem 

Equations (5.20) and (5.21) have been presented for the solution of the direct 
problem, consisting of the evaluation of the initial value and final value of an 
annuity given according to linear law. However, the same formulae solve univocally 
the inverse problem, consisting of: 

– the calculation of the constant delayed (or advance) installment of amortization 
of the debt V0 (or 0V ) with a simple discount law; 

– the calculation of the constant delayed (or advance) installment of capital 
funding Vs  (or sV ) with a simple interest law. 

 
Amortization and accumulation are usually carried out with such laws for short 

durations. 

Exercise 5.11 

We have to extinguish a debt of €5,000 at 9% annually in 3 years with delayed 
annual installments in the annual compound regime. There is the choice to amortize 
the debt with constant monthly delayed or advance installments with the assumption 
that the payments during the year produce simple interest, which only at the end of 
the year are accumulated and used for the amortization. Calculate the installments. 

A. The amount for the annual installment is R = 5,000 3 |0.09  = 1,975.27. 

Using the correction factors (5.22) on R, the following values for the other are 
obtained: 

– monthly delayed: R1/12 = R fp = 1,975.27/
11

(12 0.09)
2

 = 1,975.27.0.08003 = 

158.08; 
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– monthly advance: 1/12R  = R  fa = 1,975.27/ (12
13
2

0.09)  = 1,975.27 . 0.07946 

= 156.95 
 
In the monthly compound regime it would be:  

i1/m / i = 0.0800814; monthly delayed installment = 158.18 

i1/m (1 + i)-1/m / i = 0.0795083; monthly advance installment = 157.05 

5.4. Evaluation of varying installments annuities in the compound regime 

5.4.1. General case 

For the evaluation in the compound regime of annuities with varying 
installments, with the same signs, we can follow the classification shown in section 
5.2. Here we will deal with such an argument, showing the similarities, but taking 
into account that the schemes based on the regularity of installments are not 
conserved.  

 
Thus, we will limit ourselves to developing the calculus for the IV V0 of annual 

temporary annuities-immediate (for n years), as for the other annuity schemes it is 
enough to take into account that, starting from the previous case, we can apply the 
following changes, valid with varying installments as well as constant installments:  

– in the fractional (or pluriannual) case it is enough to use in the formulae, 
instead of years and annual rate, the number of payments and the equivalent per 
period rate; 

– in the -due case each amount is paid one year before, thus the IV is V0(1+i); 

– in the delayed
25 case each amount is paid after r years, thus the PVDA are 

V0(1+i)-r; 

– the FV Vn is given by V0(1+i)n; 

– in the perpetuities case it is enough to use n  + , but such a calculation can 
be carried out only if a rule on the formation of installments in an unlimited time is 
given.  
 

By putting together the previous five rules we can obtain all the results of the 
classification seen in section 5.2 if the aforementioned value V0 has been calculated. 
                                   
25 It is almost unnecessary to observe that, in the case of varying installments, the annuity-
immediate value coincides with that of the corresponding annuity-due delayed by one period. 
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 Denoting by Rh or hR  (in chronological order) the different delayed or advance 
installments the annuity is the union of the concordant dated amounts (h h 1

 nU ,Rh )  

or  1
 ( 1, )n

hh h R . Considering from now on the case of non-negative installments 

(and at least one positive one), due to (4.3") the IV of the annuity-immediate or -due 
are:  

    V0 Rh (1 i) h
h=1

n   ;   ( 1)
0 =1  (1 )n h

hhV R i         (5.23) 

Proceeding analogously, the FV of the annuity-immediate or -due are 

1 (1 )n n-h
n hh=V  = R +i  

;    
1

1 (1 )n n-h+
n hh=V  = R +i  

      (5.24) 

EXAMPLE 5.3.– Applying (5.23) and (5.24), calculate the IV and FV of annuities-
immediate or -due. An Excel spreadsheet can be used and the installments put 
directly into columns, applying recurrent formulae, such as  

– Vh-1 = (Rh+Vh)(1+i)-1 from Vn=0, to calculate pro-reserves and IV in the  
-immediate case; 

– Vh-1 = 1hR +Vh(1+i)-1 from Vn=0, to calculate pro-reserves and IV in the  
-due case; 

– Mh = Mh-1(1+i)+Rh from M0=0 to calculate retro-reserves and FV in the  
-immediate case; 

– Mh = (Mh-1+ 1hR )(1+i) from M0=0, to calculate retro-reserves and FV in the  
-due case.  

The following table is obtained where, both in the -immediate and the -due case, 
the IV is given by the pro-reserve in 0 and the values below in the column give the 
pro-reserve for the following years, while the FV is given by the retro-reserve in n 
as credit for the counterpart which pays the installments, and the values above in the 
column give the retro-reserve for the preceding years. Obviously, given that an 
annuity operation is unfair, the retro-reserves and pro-reserves will never coincide in 
the various years. 
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 Rate = 0.042  Length = 10  

Year delayed 
installment 

advance 
installment 

delayed 
pro-

reserve 

advance 
pro-reserve

delayed 
retro-reserve

advance 
retro-reserve 

0 0.00 521.44 5,230.48 5,450.16 0.00 0.00 

1 521.44 412.36 4,928.72 5,135.73 521.44 543.34 

2 412.36 125.61 4,723.37 4,921.75 955.70 995.84 

3 125.61 1,544.98 4,796.14 4,997.58 1,121.45 1,168.55 

4 1,544.98 897.33 3,452.60 3,597.61 2,713.53 2,827.50 

5 897.33 69.55 2,700.28 2,813.69 3,724.83 3,881.27 

6 69.55 587.11 2,744.14 2,859.39 3,950.82 4,116.76 

7 587.11 897.54 2,272.28 2,367.72 4,703.87 4,901.43 

8 897.54 1,258.32 1,470.18 1,531.93 5,798.97 6,042.53 

9 1,258.32 285.10 273.61 285.10 7,300.85 7,607.48 

10 285.10 0.00 0.00 0.00 7,892.58 8,224.07 

   

 IV annuity- 
immediate = 

  
         5,230.48 

 

 IV annuity- 
due      = 

  
 5,450.16 

 

 FV annuity  
immediate = 

  
 7,892.58 

 

 FV annuity 
due.     = 

  
 8,224.07 

Table 5.1. Pro-reserves and retro-reserves in the immediate and due case  

The Excel instructions are as follows. C1: 0.042; F1: 10; use the first two rows 
for data and column titles, the annual values from 0 to 10 are in rows 3-13: 

– column A (year): A3: 0; A4:= A3+1; copy A4, then paste on A5-A13; 

– column B (installments in the -immediate case): B3: 0; from B4 to B13: (insert 
data: delayed installments);  

– column C (installments in the -due case): copy from B4 to B13, then paste on 
C3 to C12 (insert data: advance installments); C13: 0;  

– column D (pro-reserve in the -immediate case): D13: 0; D12: = (B13+D13)* 
(1+C$1)^-1; copy D12, then paste backwards on D11 to D3; 

– column E (pro-reserve in the -due case): E13: 0; E12: = C12+E13*(1+C$1)^-
1; copy E12, then paste backwards on E11 to E3; 



Annuities-Certain     179 

– column F (opposite of the retro-reserve in the -immediate case): F3: 0; F4: = 
F3*(1+C$1)+B4; copy F4, then paste on F5 to F13; 

– column G (opposite of the retro-reserve in the -due case): G3: 0; G4: = 
(G3+C3)*(1+C$1); copy G4, then paste on G5 to G13; (initial and final value of 
annuities-immediate and -due): D15: = D3; E16: = E3; F17: = F13; G18: = G13.  

Continuous flow 

 In case of continuous flow (t) of annuity from 0 to n, the IV and the FV are 
expressed respectively by 

V 0 (t)e tdt0
n                     (5.23') 

V n (t)e (n t)dt0
n                    (5.24') 

With the previous formulae the direct problem is solved by finding the IV or the 
FV of an annuity with varying installments. The same formulae form a constraint 
for the inverse problem, by finding an annuity, i.e. a sequence of dated amounts 
with the same sign, which has a given IV or FV. Thus, as already seen regarding 
annuities with constant installments, if the IV is given, we have a problem of 
gradual amortization of an initial debt, while if the FV is given, we have a problem 
of gradual funding at the end of the time interval. In the case of constant 
installments we obtain a unique solution, owing to n-1 equality constraints between 
the installments. Instead, in general the solution of the inverse problem is not 
unique, having n-1 degrees of freedom. Furthermore, in the amortization, due to 
technical and juridical reasons, inequality constraints are introduced so that the 
amortization installments cover at least the accrued interests. 

5.4.2. Specific cases: annual annuities in arithmetic progression  

 Let us here consider some relevant models, which refer to specific cases of 
annual annuities with varying installments. Among them, we can consider the 
installment evolution in arithmetic progression (AP). We obtain such a feature when 
all the subsequent installments vary according to a constant rate  (positive or 
negative) of the first installment R. Thus, the subsequent differences are constant, 
and are given by the ratio D. Therefore, D = R and  

Rh = R + (h-1)D > 0,(h = 1, …, n)           (5.25) 
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 Let us focus first on the normalized or unitary annuity, also called an increasing 
annuity, where the first installment and the ratio are unitary; therefore Rh = h. In the 
temporary case the IV is indicated with the symbol (Ia)n |i; its value is 

( )a n|iI  = n
h=1

1
 (1 )  = 1 (1  )(1 )

i d
h nh i n d i      (5.26) 

For perpetuities (n = ), prompt and delayed, given that lim
n

 n(1+i)-n =  0 , 
we obtain the IV of an increasing perpetuity 

(Ia) |i  = 
  

h 
h=1

+ (1 i) h  =  
1

i d
 ;  r / (Ia) |i  = 

 

vr

i d
      (5.26') 

 Denoting by (Is)n |i  = (1+i)n (Ia)n |i the FV in the delayed case, in the other cases 
the symbols for the values of the increasing annuities are easily extended as in 
section 5.2. 
 
 To deduce the closed form given in (5.26) and then in (5.26'), some algebraic 
developments are needed. However, it is also possible to use financial equivalences, 
which we will use starting from perpetuities. Let us observe, first, that the relation  
an |i  = a |i  – n / a |i (see footnote 16) can be generalized as follows 

(Ia)n |i  = (Ia) |i   – n / (Ia) |i  – n n / a |i            (5.27)  

(because (Ia) |i  – n / (Ia) |i is the IV of a perpetuity, increasing until time n but  
with constant installments after n; thus to obtain the IV of a temporary annuity we 
still need to subtract n n / a |i). We have an analogous conclusion for the -due case.  

The 1st part of (5.26') is justified for the transitivity property of the equalities. 
We can observe, in fact, that using the delayed evaluation rate i (equivalent to the 
advance rate d = i/(1+i)), the supply (0,S) is equivalent to the perpetuity of its 
advance interests, i.e. (h h 0

 U ,Sd)  with graph  

0

0

Sd

1

Sd

2
...

Sd

h
 

Furthermore, each supply (h,Sd) is equivalent to the perpetuity, delayed by h 
years, of its delayed interests Sid, i.e. (kk h 1U ,Sid)  with graph 

Sid

h 1

Sid

h 2
...

Sid

k
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and adding to h, for all supplies, the triangular development (kk h 1U ,Sid)h 0U  

= (k k 1
 U ,kSid)  is obtained, with graph  

[ 0

0

Sid

1

2Sid

2
...

kSid

k
]. 

This last annuity, for which the IV is Sid (Ia) |i
26, is equivalent to (0,S) for 

which the IV is S. Therefore, Sid (Ia) |i  = S, i.e.: (Ia) |i  = 1/id. This proves the 1st 
part of (5.26'). The 2nd part  is obvious. Developing (5.27), we obtain  

(Ia) |i  – n / (Ia) |i – n n / a |i =  

= 1
i d

(1 i) n

i d
n

1 (1 i) n

i
 = 

1
1 (1 )(1 ) nn d i

i d
  

i.e. (5.26). 
 
 After what has been said about the relationship between the different cases, this 
is an exercise to give the expressions for the other values of the annual increasing 
annuity. Starting from (5.26) and (5.26'), it is found that 

n|i(I )s   = 
(1 i)n

i d
1 (1  )(1 ) nn d i  ( )s n|iI  = 

    

(1 i)n

 d2 1 (1 )(1 ) nn d i ;  

                                   
26 Considering that, by definition, (Ia) |i  is the IV of (k,k)k 1U , by multiplying the 

amounts by Sid the IV of the annuity (k,kSid)k 1U  is obtained. We ascertain here the 

strength of the compound discount: at whichever rate, the present value of an annuity with 
diverging installment and infinite length is finite, i.e. it is in no case diverging! This is due to 
the fact that an increasing exponential function becomes infinite faster than a linear one, and 
also a polynomial one. Therefore, the result also holds true for increasing perpetuities of the 
higher order, which we can define for subsequent sums, in this manner: the hth installment of 
the perpetuity-due with IV 1/dm (m>2) is the sum of the first h installments of the annuity for 
which the IV is 1/dm-1. With m=3, 1/d3 is the IV of the perpetuity with advance installments 
which are the partial sums of the installments’ sequence corresponding to the IV 1/ d2, i.e.: 1; 
1+2=3; 1+2+3=6, ..., 1 +...+n = n(n+1)/2, ... 
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( )a n|iI  = 
    

1

 d2 1 (1  )(1 ) nn d i  ;  

( )a |iI  = 
    

1

 d2
;  

/ ( )r a n|iI  = 
    

vr

 d2 1 (1  )(1 ) nn d i  

/ ( )r a |iI  = 
    

vr

 d2
 

EXAMPLE 5.4.– To have an order of magnitude, let us give in Table 5.2 the IV, 
PVDA, FV for two parametric scenarios. 

Type of annuity    Symbol        (i = 4.20%; r = 5)  (i = 11.35%; r = 2) 
 n = 20 n =  n = 9 n =  

-immediate IV (Ia)n | i   122.141386  590.702948  23.457999  86.436774 

-due IV ( )a n|iI    127.271304  615.512472 26.120482 96.247340 

-immediate PVDA   r / (Ia)n | i   99.431559 480.87316 18.919538 69.713696  

-due PVDA  / ( )r a n|iI   103.607684 50.069840 21.066905 77.626194 

-immediate FV (Is)n | i   278.110396   61.730949  

-due FV ( )s n|iI   289.791032        68.737412       

Table 5.2. IV, PVDA, FV calculation  

In addition, for the two scenario perpetuities with n and i, we obtain 

 n / (Ia) |i   259.426752 32.846309 

 / ( )n a |iI   270.322676  36.574365 

 n / a | i    10.456740   3.348052 

 /n a |i    10.895924   3.728056 

 (5.27) is verified with these parameters in the two scenarios, distinguishing 
between annuity-immediate and annuity-due: 

1st scenario, annuity-immediate:  590.702948 – 259.426752 – 20.10.456740 = 122.141386 

1st scenario, annuity-due:   615.512472 – 270.322676 – 20.10.895924 = 127.271324 

2nd scenario, annuity-immediate:  86.436774 – 32.846309 – 9.3.348052 = 23.457999 

2nd scenario, annuity-due:   96.574365 – 36.574365 – 9.3.72805 = 26.120482 
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We can now give the formulae for an annual annuity in AP which is 
characterized by the couple (R,D). These formulae generalize those of the 
increasing annuity. For the reasons already mentioned, we can consider only the IV 
and FV of an annuity-immediate, temporary for n years. The following is obtained:  

V0 = R an |i + D 1/ (Ia)n-1 |i  = (R-D) an |i + D (Ia)n |i   (5.28)  

Vn = V0 (1+i)n = (R-D) sn |i   + D (Is)n |i          (5.28') 

In fact, by definition, particularizing (5.23) with Rh given by (5.25): 

    
V0  Rh  h=1

n (1 i) h  = R +(h -1)D  h=1
n (1 i) h  = R an |i + D 1/ (Ia)n-1 |i  

The last side of (5.28) follows from the simple identity: R+(h-1)D = (R-D)+ hD. 

Exercise 5.12 

A lease of a company has been agreed between the parties for an annual rent, 
delayed for 12 years, of €285,000 for the first year, with an annual increment of 3% 
of the initial rent. At the compound annual rate of 6.20%, calculate the IV of such 
an annuity. 

 A. By applying (5.28) where: i=0.062; d=0.058380; v=0.941620; R=285000; 
D=8,550, the following is the result 

V0 = R a12 |0.062  + D (1.062)-1 (Ia)11 |0.062 = 

= 285,000.8.292677 + 8,550.0.941620.33.856815 = 2,635,989.12 

5.4.3. Specific cases: fractional and pluriannual annuities in arithmetic progression  

The linear variability of the installments of an annuity in AP is in practice more 
frequently applied using fractional installment. 

 
Let us observe, first, that the fractioning can concern both the frequency of 

payments k, and the frequency of variations h, where h , k=wh being w  the 
number of consecutive unchanged payments. Considering that formulae to 
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generalize (5.28) are needed to obtain the IV of annuities in AP27, it is sufficient 
here to extend to the fractional case the increasing annuity that will enter into the 
calculations, through an appropriate normalization that is convenient to apply so as 
to maintain the increments in the annual total of payments as unitary. 

 
Given the above, it is easy to verify that: 

– the increasing fractional annuity-immediate (-due) with annual increment of 
the installment (proportionally to a natural number), i.e. with h=1, k=w>1, is 
formed by installments payable at the end (beginning) of each kth of year and of 
amount 1/k in the

 
1st year, 2/k in the 2nd year, etc. Generalizing (5.26), the IV of 

annuities-immediate is 

k1
  n i

1
(I ) 1 (1  )(1 )

( ) 
= na n d i

j k d
|
| ; k 1

i
1

(I )   a
j(k) d

=|
|     (5.29) 

which is obtainable by applying to the value of the annual annuity the same 
correction factor i/j(k) (= ratio between intensities) already used for constant 
annuity. The same factor has to be applied also for FV and PVDA; 

– the increasing fractional annuity-immediate (-due) with h>1, k=wh>1, is formed, 
due to the aforementioned normalization, by installments payable at the end 
(beginning) of each kth of year, so that, for the -immediate case, the first w payments 
of the 1st year are of amount 1/hk, the second w payments of the 1st year are of amount 
2/hk,... the last w payments of the 1st year are of amount 1/k,.... the first w payments of 
the nth year are of amount [(n-1)h+1]/hk, the second w payments of the nth year are of 
amount [(n-1)h+2]/hk, …. the last w payments of the nth  year (in the case of a 
temporary annuity for n years) are of amount n/k. The IV of this annuity-immediate is 

k h k h
n i i

1 1
(I ) 1 (1 ( ))(1 ) ; (I )

( ) ( )
n

    a n h i a
j(k) h j(k) h

= =|
|

|
|  (5.30) 

and generalizes (5.26) in the sense that the annual intensities i and d are substituted 
in (5.30) for those relative to frequency k and h. The same thing holds true for FV 
and PVDA; 

– if all the payments of an increasing fractional annuity-immediate, with h=1 or 
h>1, are backdated for 1/k of a year, we obtain an increasing fractional annuity-due, 
the IV of which follows from that of the annuity-immediate on multiplying by 

                                   
27 In generalizing (5.28) for the fractional case it is convenient to consider its last term, at 
least when h>1, which implies installment variations during the year, to avoid the 
complication of deferment for a fraction of years. 
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(1+ik); therefore it is sufficient to substitute j(k) with (k) into the formulae in (5.29) 
and (5.30). 

Proof 

Let us first observe that (5.27) is generalized in  

     (Ia)n |i
k|h

= (Ia) |i
k|h

  
n /

(Ia) |i
k|h  n n /a |i

(k)
          (5.27') 

Therefore, to prove (5.29) and (5.30) it is sufficient to consider the perpetuities, 
because using their value we obtain that of the temporary annuities. (5.29) is proved 
observing that, analogously to what was seen for the annual annuity, an amount S in 
0 is equivalent to the annual perpetuity, starting with 0, of advance interest Sd and 
that each installment Sd is equivalent to the subsequent k-fractional perpetuity of 
delayed interest Sdi1/k. The total of the payments is, therefore: 

– S d i1/k at the end of each period with duration 1/k of the 1st year; 

– 2 S d i1/k at the end of each period with duration 1/k of the 1st year; 

– etc. 

Therefore it is sufficient to use S=1/j(k)d in order to obtain (5.29) as IV of the 
annuity with fractional payments 1/k in the 1st year, 2/k in the 2nd year, etc., and thus 
unitary increments in the annual total of payments, which is 1 in the 1st year.  

 
Equation (5.30), which generalizes (5.29), is proved observing that the supply 

(0,S) is equivalent to the subsequent h-fractional perpetuity-due with constant 
installments Sd1/h, each of which is equivalent to the following k-fractional annuity-
immediate of constant installments Sd1/hi1/k. The amount S is thus the IV of the 
perpetuity with payments:  

– Sd1/hi1/k at the end of each of the first k/h periods with duration 1/k of the 1st 
year;  

– 2Sd1/hi1/k at the end of each of the second k/h periods with duration 1/k of the 
1st year;  

– hSd1/hi1/k at the end of each of the last k/h periods with duration 1/k of the 1st 
year;  

– (h+1)Sd1/hi1/k at the end of each of the first k/h periods with duration 1/k of the 
2nd year;  

– (h+2)Sd1/hi1/k at the end of each of the second k/h periods with duration 1/k of 
the 2nd year; 
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– 2hSd1/hi1/k at the end of each of the last k/h periods with duration 1/k of the 2nd 
year;  

– etc. 
 
It is sufficient to use S = 1/[j(k) (h)] in order to obtain the perpetuity that starts 

with the fractional payment 1/(hk), reaching the level n/k after n years, for which the 
IV is given by the 2nd of (5.30).  

 
It is obvious that the IV of the annuity, temporary (or perpetuity), which has 

installments proportional to those of an increasing fractional annuity-immediate 
(with h>1, k=wh>1) and first payment H, is obtained from the first (or second) 
value in (5.30) multiplying by Hhk. More generally, the IV of whichever fractional 
annuity in AP is obtained with an appropriate linear combination of the unitary IV 

  
an |i

(k)  and       (Ia)n |i
k |h.  

Observation 

 When h>1, the value of payments of the1st year is no longer unitary; its value is 
T1 = (h+1)/2h. In general the total payment of the year s+1 is 

Ts 1
k

h

sh 1
hk

...
(s 1)h

hk

h 1
2h

s , s = 0,1,2,...    (5.31) 

thus Ts+1 = Ts+1, (s,h) and the unitary normalization of the annual increments is 
verified. The total of payments in the first n years is 

T (n ) Ts 1s 0
n 1 n

2
n

1
h

                (5.31') 

Continuous increasing annuity  

 The values in the continuous case are obtained, as usual, on diverging the 
frequency. However, in this case we have two frequencies: the frequency of 
payments and the frequency of increments.  
 
 Recalling that lim

k
j (k) lim

h
(h) , we observe that there is no distinction 

between -due and -immediate in the case of varying installments as well. Let us give 
the results, that can be easily proved, starting from (5.30), in both cases: 

– if only the payment frequency k diverges, the IV is  

h
n i

1
(I ) 1 (1 ( ))(1 )

( )
n

  a n h i
 h

=|
| ; 

h
i

1
(I )

( )
  a

h
=|

|   (5.32) 
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– if both the payment frequency k and the increment frequency h diverge, the IV is 

i 2

1
(I ) 1 (1 )(1 ) n

  na n i
 

=|
|  ; +

i 0 2

1
(I ) -  t

  a  t  e dt=|
|   (5.32') 

and the total of payments in the first n years is n2/2. 

EXAMPLE 5.5.– Let us make some numerical comparisons on the fractional 
increasing annuity, changing the fractioning with the constraint h  k, verifying the 
increasing behavior if using the same h from higher deferment to higher anticipation, 
decreasing if h increases, fixing the other parameters. Let us assume i=0.07; n=10. 
Considering the frequency 1, 4, 12, the equivalent values are: d=0.0654206, 
j(4)=0.0682341, j(12)=0.0678497, (4)=0.0670897, (12)=0.0674683, =0.0676586 
and the following table is obtained, where T (10)  is the maximum value obtainable 
(h,k) at zero rate.  

 k h             T (10 )      (Ia) |i
k|h       |( k|h

iIa)  

 1 1 55.000 34.7390688 37.1707813 

 4 1 55.000 35.6381167 36.2460231 

 12 1 55.000 35.8400231 36.0426277 

  1 55.000 35.9412524 35.9412524 

 4 4 51.250 32.8980119 33.4591782 

 12 4 51.250 33.0843943 33.2714212 

  4 51.250 33.1778403 33.1778403 

 12 12 50.417 32.4783090 32.6619097 

  12 50.417 32.5700432 32.5700432 

   50.000 32.2671080 32.2671080 

Table 5.3. Comparisons on the fractional increasing annuities 

Exercise 5.13 

1) An industrial company has to pay a monthly delayed rent for leasing 
(equipment, etc., see section 6.5) equal to the amortization installment at the interest 
rate of 9.50% for 7 years proportional to the initial value of the plant of €48,500, net 
of 5% of the value initially paid as an advance, and without any other clause except 
for an annual increment of 12% on the initial rent. Calculate the rents for the 7 years 
and the initial value of the borrowed amount at the evaluation rate for the supposed 
income of 12% per year. 
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A. 

a) calculation of the installments: Borrowed amount = M = 48,500 (1–0.05) = 

€46,075; for (5.13), being j12 = 0.0910984, initial rent = C = M/(12
 
a

7 |0.095
(12) ) = 

46,075/(12.5.1615977) = €743.87. 
 
Given the adjustment clause there is an annual increment of the monthly rent of 

€18.60 resulting in: 

– Monthly rent in the 1st year = €743.87 

– Monthly rent in the 2nd year = €762.47 

– Monthly rent in the 3rd year = €781.07 

– Monthly rent in the 4th year = €799.67 

– Monthly rent in the 5th year = €818.27 

– Monthly rent in the 6th year = €836.87 

– Monthly rent in the 7th year = €855.47 

 
A. 
b) calculation of the IV: using (5.13), (5.29) and: n=7; i=0.12; k=12; h=1; R = 

743.874 12 = 8926.488; D = 18.597 2 = 223.164 (in terms of annual flows) and 
generalizing (5.28) in  

V0 = R
  
ar 

n |i
(k) + D 1/  

(Ia)n |i
k|h

 = (R-D)
 
an |i

(k) + D
 
(Ia)n |i

k|h , 

the following is obtained: 

V0 = 8926.488.4.8096288 + 223.164.13.7441973 = €46,000.30 

2) A three-year work contract starting on the 1st January has an annual wage bill 
of €13,390 to be paid in 12 delayed monthly salaries + 13th salary for Christmas, and 
also an increasing benefit to add to the 12 monthly, initially equal to 5% of the 
initial salary but with quarterly increments all equal to it, not affecting the 13th one. 
To calculate the end of job indemnity, let us value the FV of such a contract at an 
evaluation rate of 6.60%. 

A. It is convenient to first calculate the IV, afterwards accumulating it for 3 
years, and keep separate the 13th salary from the ordinary monthly salaries, 
including the increasing benefit.  
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The payments for the 13th salary give rise to an annual annuity-immediate with 3 

installments of 13,390/13 = €1,030, with IV of: V'0 = 1030 a3 |0.066  = €2,722.92.  
 
The ordinary monthly salaries give rise to a 12-fractional increasing temporary 

annuity with quarterly increments, formed by 3 delayed monthly installments of 
€1,081.50 followed by another 3 of €1,133.00, etc. The parameters are: n=3; h=4; 
k=12; i=0.066. Thus applying the last term of (5.28), its IV is 

V"0 = 1,030.12.
  
a

3 |0.066
(12)  + 1,030.0.05.4.12.

 
(Ia)

3 |0.066
12|4  = 31,784.29 + 10,027.48 = 

=  €41,811.77 

Thus, the IV of the contract is, at the rate of 6.6%, V0 = V'0 + V"0 = €44,534.69 
and the FV is V3 = 10663 V0 = €53,947.34. 

Pluriannual increasing annuities 

 Let us briefly mention the pluriannual increasing annuities, from which can be 
deduced with linear combination the IV of the pluriannual annuities in AP, which 
find practical application generalizing the annuities with constant installments. Let 
us consider only the case of h=k=1/p (i.e. p-annual increasing annuity with period 
1/k and increment after each payment)28. The following normalization implies that 
the sth installment is sp2; thus the rth, at the end of n years, if n=rp, is rp2=np. 
Therefore, the IV are obtained using (5.30), where the expressions already used in 
(5.18) for the p-annual intensities j(1/p) = [(1+i)p-1]/p; (1/p) = [1-(1+i)-p]/p are 
taken into account. For the perpetuities we obtain the following results 

1 1
p p

2|

|i 1 1

1
=

( ) ( ) (1 ) (1 ) 2
(I )

p pp p

p

j i i
a         (5.30') 

1 1
p p

2

2 2

|
|i 

1

1
=

( ) 1 (1 )
(I )

pp

p

i
a  

                                   
28 The conclusions for this specific case can be easily obtained from those of the annual 
increasing annuity (see (5.26) and (5.26')) assuming as the new unit measure the p-year and 
thus adopting proper measures for time and rates. 
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while for the temporary case it is enough to multiply (5.30') by [1-
(1+n (1/p))(1+i)n]. To have the values of the annuity, proportional to the previous 
one, for which the first installment is H, it is sufficient to multiply by H/p2.  

Exercise 5.14 

 Consider again the problem of Exercise 5.7 assuming that the cost of the plants 
due to the five-yearly replacements increases by 26% in respect to the initial cost. 
 
 A. The parameters are: n=20; p=5; i=7.45% thus (1/5) = (1-1.0745-5)/5 = 
0.0603638. The cost for the plant at time 0 is €255,000; the increment of cost for 
each replacement is: 255,000.0.26 = €66,300 starting at time 5 for 3 times. To avoid 
deferments let us divide the five-yearly varying cost by the sum of a five-yearly 
advance cost of 255,000-66,300 = €188,700 and by an increasing cost proportional 
to an increasing five-yearly annuity-due with a first installment of €66,300. Thus, 
applying (5.17) and (5.30') modified for the temporary case, the IV of such an 
operation is 

V0  = 
1 1
5 5(1/5)

20|0.0745 0.0745 20

188,700 66,300
(I )

255
n n |

|  = 37,740.5.
20

5

1 1.0745

1 1.0745
 + 

+ 
25

66,300 25

25 1 1.0745

[1-(1+20.0.0603638)(1.0745)-20] = 37,740.12.6298497 + 

+ 2,652.130.5014439 = 476,650.53 + 346,089.83 = €822,740.36 

5.4.4. Specific cases: annual annuity in geometric progression 

Temporary annuities 

 Often in annuities the installment variation is proportional to a fixed ratio of the 
previous installment instead of the initial one. It follows that the behavior of 
installments is in geometric progression (GP), the ratio of which we will indicate 
with q. Typical are those phenomenon of  adjustment with constant rate: if a salary 
increases at the rate of 5% the following index numbers are obtained 

100, 105, 110.75, 115.7625, 121.5506, etc. 

in GP with ratio q=1.05. 
 
 Let us define a temporary annual unitary annuity-immediate in geometric 
progression with ratio q>0 with the following operation: 
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(h h 1
 nU ,qh 1)                    (5.33) 

with graph: 
11

...
1 2

nq q

n
.  

 
 If the period is not annual, it can always be assumed to be a unit measure of time 
(and in such case i is the corresponding per period rate), thus unifying the treatment. 
 
 The IV of the unitary annuity (5.33) in a compound regime is given by 

      
(Ga)n |i

[q]   qh 1
h 1
n

vh  
nv   ,  if  q = 1+i

v
1 (qv)n

1 qv
,  if  q 1+ i

       (5.34) 

If we have an unitary annuity-due, its IV   (Gä)n |i
[q] is obtained multiplying the 

values in (5.34) by (1+i) and 

      
(Gä)n |i

[q]   qh 1
h 1
n

vh 1  
n   ,  if  q = 1+i

1 (qv)n

1 qv
,  if  q 1+ i

       (5.34') 

 More generally, the IV of annuities in GP, -immediate or -due, with a first 
installment equal to R are given by 

    V0 R(Ga)n |i
[q];        [q]

0 n|i(G )V R a            (5.34'') 

Using = q-1 (=algebraic rate of variation of the GP), if q<1+i i.e. <i, qv is the 
discount factor at the rate  = (1/qv)-1 > 0 such that the IV (5.34') is also that of a 
constant annuity-due at the rate (see (5.2)). If instead q>1+i i.e. >i, qv is the 
accumulation factor at the rate  = qv-1 > 0 such that the IV (5.34') is also the FV of 
a unitary constant annuity-immediate at the rate (see (5.6)). In formulae29:  

                                   
29 See the observation in footnote 19. We obtain a formula analogous to the 1st expression of 
(5.35) for annuity-immediate if it is normalized assuming the first installment equal to q, 

coherently with the following viewpoint: considering the annuity in g.p. (kk 0
nU ,qk ), the 

IV of the annuity-due is calculated on the first n supplies; the IV of the annuity-immediate 
takes account of the following n supplies after the first one. For all choices of q and i, the two 
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q<1+i :  
[q]

n|i(G )n  = an| ;  q>1+i :  [q]

n i(G )ä |  = sn | (5.35)

where 

  
q  1 =

1 i

1
  (1 i)(1 )               (5.36) 

Equation (5.35) speeds up the calculation of (5.34) and (5.34') leading it back to 
that of the values of constant annuities. 

 
Due to the decomposability, the FV  (Gs) , (G )s  and the p.v.d.a . 

  r / (Ga) , / (G )r a  of unitary annuities in GP, -immediate and -due, are obtained from 
IV with the usual factors: 

    (Gs)n|i
[q] (1 i)n (Ga)n|i

[q]  ;  
[q] [q]
n i n i(G ) (1 ) (G )ns i ä| |      (5.37) 

    r / (Ga)n| i
[q] (1 i) r (Ga)n| i

[q]  ;     r / (Gä)n| i
[q] (1 i) r (Gä)n| i

[q]   (5.38) 

From a general point of view, let us consider annuities with installments that are 
sum of two addends: the former is constant, the latter is varying in GP Considering 
an annual temporary annuity-immediate (or with another period to assume as 
unitary) with installment Rh = H + Kq

h-1, its IV and FV are 

    

V0 H an |i K(Ga)n| i
[q]

Vn H sn |i K(Gs)n| i
[q]

                 (5.39) 

 Analogous formulae hold for other types of annuities in GP.  

Real and monetary variations  

The formulation that leads to (5.36) is a specific case – which considers rates 
that are constant in time – of the problem of financial evaluation with rates that vary 
in time and with variation of the purchasing power of money. Such a problem, 
which has an important application in macroeconomics and finance, can be shown 
with a simple argument. Let mt and ct be the interest rate for the year (t-1,t), on the 

                                   
theoretical rates  and  introduced in (5.35), because of (5.36) are linked by the relation 
(1+ )(1+ ) = 1, thus they have opposite signs. Also, we have to consider the case q=1+i, in 
which  =  = 0. 
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monetary market and on the commodity market (such as wheat, for example) 
respectively, in the sense that: 

– for M euros loaned in t-1, we pay back M(1+mt ) euros in t; 

– for C kilograms of wheat loaned in t-1, we give back C(1+ct) kilograms of 
wheat in t.  
 

In addition, let rt be the variation rate of the wheat price in euros, i.e. C 
kilograms are traded today for M euros and after one year for M(1+rt) euros. It is 
obvious that the three rates mt, ct, rt are bound by an equation, which is deduced as 
follows. If at time t-1 the C kilograms of wheat are traded on the market for M 
euros, two equivalent loans of C and M lead in t to the equivalent return of C(1+ct) 
kilos and M(1+mt) euros; but in such time C kilos are traded with M(1+rt) euros, 
and thus C(1+ct) kilograms are traded with M(1+rt)(1+ct) euros. For comparison the 
multiplicative relation is found, which is also called Fisher’s equation

30, 

1 + mt = (1 + rt)(1 + ct)                   (5.40) 

Supposing a market economy with only one commodity (wheat), mt is the 
monetary interest rate (or rate in value), ct is the real interest rate (or rate in 
volume), rt is the variation rate of the commodity price. (5.40) thus expresses the 
market constraint in terms of exchange annual factors. If rt and ct are small, the 
product rt ct in the development of (1+rt)(1+ct) can be ignored and (5.40) can be 
approximated using the simple relation 

mt = rt + ct    (5.40') 

usually used (and sometimes abused) in the description of macroeconomic 
phenomena.  

 
In the specific case of constant rates, putting m=i, c= , r= , (5.40) is reduced to 

(5.36) and adding the effects for n years, the 1st expression of (5.35) is found, which 
expresses the equality between: a) the IV at rate i (which acts as the monetary rate 
m) of the annuity in GP with ratio q, i.e. with variation rate , and: b) the IV at rate 

, which act as real rate c, of the constant annuity31. This also holds in cases in 

                                   
30 See Fisher (1907). 
31 If there is a devaluation of the commodity compared to the money, then 0<q<1, while in 
the case of appreciation it is q>1. If and only if the real rate  is positive, then <i, while =0 
implies =i. It can happen that the rate of price increment is higher than the monetary interest 
rate, so we obtain a real rate <0. In this last case, to avoid the use of a negative rate in the 
formulae, it is enough to introduce the value  linked to  by (5.36) and to apply (5.35). 
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which all the installments are multiplied by the constant R. Therefore, we have to 
consider equivalent to a discount:  

– at a real rate  a constant annuity with installments given by the constant 
values of fixed quantities at the constant price of the initial year; or  

– at the corresponding monetary rate i, the annuity of the varying values of the 
same quantities at the current prices that vary at the rate 32  

Perpetuities 

If the annuity in GP is a perpetuity – differently from what happens for 
perpetuity linearly increasing33 or according to powers with integer exponent 
greater than 1 – of time, its IV assumes a finite value only if q<1+i. We obtain in 
such a case: lim[ (1 ) ] 0n n

n
q i  and thus 

    
(Ga) |i

[q]   
v

1 qv
 ; 

    
(Gä) |i

[q]   
1

1 qv
         (5.41) 

In general, with an initial installment R1, the IV V0 is obtained from (5.41) and 
multiplying by R1. The other values are obtained simply by applying the 
corresponding factors. 

Exercise 5.15 

1) Let a loan have paid back delayed installments indexed at 3%, the first of 
which coincides with the constant amortization installment of the debt of €140,000 
over 10 years at the rate of 6.3%. Calculate the sequence of installments and the IV 
of the temporary annuity and the IV of the corresponding perpetuity, if it is finite. 

                                   
32 To generalize the 1st expression of (5.35) in the case of installments Rh and varying rates 
mt,rt,ct it is enough to replicate Fisher’s equation (5.40) using t=1,2,..,n, and we obtain with 
simple developments the equality 

Rh
1 rt

1 mt
t 1
h

h 1
n

h

 =  Rh
1

1 ct
t 1
h

h 1
n

h

  

between the IV at the monetary rates mt of the varying amounts Rh indexed at the rate rt, i.e. 
evaluating the commodity at the current prices, and the IV at the real rates ct of the amounts 
Rh which are not indexed, i.e. evaluating the commodity at a constant price. If the rates are 
linked by (5.40'), the equality is an approximation. 
33 We can observe that the arithmetic progression behavior is a discretization of the linear 
behavior while the geometric progression behavior is a discretization of the exponential 
behavior. It is important to analyze this comment thoroughly, from the viewpoint of the 
mathematical analysis, and the problems that come up when we consider perpetuities. 
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A. We obtain qv = 0.9689558 < 1, R1 = 140,000 10 |0.063, Rh = 1.03 Rh-1 
(h=2,...,10) and the following values in euros are found for the installments: 

R1 = 19,292.79; R2 = 19,871.57; R3 = 20,467.72; R4 = 21,081.75; R5 = 21,714.20 

R6 = 22,365.63 ; R7 = 23,036.60; R8 = 23,727.70;R9 = 24,439.53;R10 = 25,172.71   

Due to (5.34”), the IV is 

101.03
1.063[1.03]

0 1 1.03
1.063

10 0.063

1
(G ) 19,292.79 19,292.79 8.1962415

1.063 1
V R a | €158,128.37 

which has to compare with the value 140,000 of the annuity with constant 
installment.  

 
If we consider a perpetuity, using q = 1.03 < 1+i = 1.063, (5.41) is applied and 

the IV of the perpetuity is bounded and is 

[1.03]
0 1 1.03

1.063
0.063

19, 292.79
(G ) 19,292.79 34.2414848 €660,613.77

1.063 1
V R a |   

2) Assuming the compound regime and using the annual rate of 6%, let us 
consider a sequence of advance annual rent indexed at 9% for 10 years, the first of 
which coincides with the funding annual constant installment of the amount of 
€100,000 in 10 years. Calculate the IV and the FV of the aforementioned annuity, 
and also the rate of the equivalent constant annuity. Also consider the perpetuity. 

 
A. The first advance installment is 

R1 = 100,000 10|0.06  = 100,000.0.0715735 = 7,157.35 

and the following installments are  

R2 = 1.09 R1 = 7,586.80; ............; R10 = 1.099 R1 = 12,092.20 

By applying (5.34") and (5.37), the following is the result: 

[1.09]
0 1 10|6%(G )V R a  = 7157.35 . 11.3746307 = €81,412.21 

[1.09]
10 1 10 6%(G )V R s | 7157.35 . 20.3702312 = €145,796.87 
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The value €145,796.87, if compared with the capital of €100,000 accumulated 
with 10 constant installments of €7,157.35, shows the effect of the compound index 
at 9%. 

 
The rate  applied in (5.35) results here as (1.09/1.06)-1 = 0.0283019 

independently from n and forming an active rate of accumulation. The constraint 
(1+ )(1+ ) = 1 holds true (see footnote 29), and thus if we exchange the two rates i 
and q-1, using the index at 6% and the interest at 9%, the following is obtained:  

 = (1.12/1.09)-1 -1 = 0.0283019, coinciding with  but to be interpreted as the 
allowed amortization rate. 

 
As q>1+i, not only the values of the temporary annuities, but also the single 

discounted values, increase with n, and thus the perpetuity has unlimited value.  

5.4.5. Specific cases: fractional and pluriannual annuity in geometric progression 

Proceeding analogously as for the annuities in AP, let us briefly examine the 
changes connected with the fractioning of annuities in GP. 

 
This is useful because sequences of payments and variations subdivided during 

the year are widely used (see section 5.4.5). With the positions already used, let 
h  be the variation frequency and k=wh the payment frequency, with w  
being the number of consecutive unchanged payments.  

 
To simplify the discussion without loss of generality, it is convenient to use h=1 

and then k=w. This is obtained assuming as a new unit measure of time, the period 
between two consecutive installment variations, which we will call the invariance 
period, having fractioned the installment in k equal parts34, with delayed and 
advance payments at each kth of the period; rate i will be the equivalent rate.  

The normalization that leads to the unitary fractional prompt annuity is that in 
which, fractioning the payment of each period into k equal parts, the total of 
payments of the first period is unitary and those for the following periods proceeds 
in GP of ratio q, as shown in the following graph for an -immediate with temporary 
n 
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34 With the symbols used in section 5.4.3, this is the case of h=1, k=r. 
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while for an -due the same amounts are backdated by 1/k. Their IV are obtained 
from (5.34) and (5.41) by applying for each invariance period, and thus for the 
whole n years, the same correction factors fA obtained in section 5.2.4 for Problem 
A, respectively i/j(k) and i/ (k)

35.  
 
With the symbols taking their obvious meanings, we obtain:  

      
(Ga)n |i

[q;k]   
d n /j(k)  ,  if  q = 1+i

d[1 (qv)n ]
j(k)[1 qv]

, if  q 1+ i
            (5.42) 

      
(Ga) |i

[q;k] d

j(k)[1 qv]
,  if  q 1+ i

            (5.42') 

[q;k]
n i

( ) if 1

(G ) [1 ( ) ]
if   1

( )[1 ]

n

d  n / k   ,   q= +i

a   d qv
, q +i

k qv
|           (5.42'') 

[q;k]
i(G ) if   1

( )[1 ]

d
a ,  q +i

k qv|
        (5.42''') 

If all of the payments of the first invariance period are R, to obtain V0, it is 
enough to multiply R by (5.42) or (5.42') in the immediate case, or else to multiply 
R by (5.42’’) or (5.42’’’). To obtain the FV and the PVDA of r periods, multiply by 
(1+i)n and vr. For the IV in perpetuity, use (qv)n = 0.  

 
For Problem B the correction factors are those already used, i.e. those needed to 

obtain the k-fractional installments with an addendum in GP from one invariance 
period to the next. Therefore, in the -immediate case we can write the installments 

                                   
35 A proof based on equivalences is the following. For the (h+1)-th period we want the 
financial equivalence in h+1 (which is the instant of the end of the period and also the instant 
of payment of the per period non-fractional installment qh) between such an installment and 
all of the fractional installments of the period, for which the valuation is 

1
kr 1

k qh (1 i1/ k )k r  1
k

qh (1 i1/ k )k (1 i1/ k ) r
r 1
k  

= 1
k

qh (1 i1/ k)k (1 i1/ k ) k (1 i
1/ k

)k 1

1 i1/ k
1

qh i

j
k

 

Therefore, also in this case: fA
i

jk

. 
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as Rh
(k) H (k ) K (k)qh 1, so to not modify the values (5.39). In the -due case the 

results are analogous, obtaining 
( )kH  and 

( )kK  from H  and K . With the latter 
we have36 

( )1/ 1/( ) , kk kk i i
H H K K  

i i
, ( ) ( )1/ 1/

1/ 1/(1 ) (1 )
k kk k

k k

i i
H H ,K K

i i i i  
 (5.43)  

For the pluriannual case, going back to the annual unit of measure, we only 
consider the case h=k=1/p, i.e. of a normalized p-annual annuity with variation at 
each payment; it is not restrictive to assume, to be consistent with the parameters of 
the annual annuity, the ratio qp (that would be obtained by annually applying the 
ratio q). To calculate the IV of a temporary annuity it is sufficient to apply (5.34) 
and (5.34'), assuming as the unit of measure the interval of p years. Therefore, in 
terms of annual parameters, the following is easily obtained, in the -immediate case: 

      

(Ga)n|i
[q p ; 1

p
]
  

n(1+i)-p /p  ,  if  q = 1+i

1 (qv)n

(1 i) p q p
   ,  if  q 1+i

           (5.44) 

and in the -due case: 

p 1
p

[q ; ]

n i

if 1

(G ) 1 ( )
if   1

1 ( )

n

p

n/p        ,    q= +i

a    qv
,  q +i

qv
|             (5.44') 

The IV of a perpetuity assumes a finite value only if q<1+i, resulting, in such a 
case, in: lim

n
(qv)n 0 , and thus  

    
(Ga) |i

[q; 1
p

]
  

1

(1 i) p q
   ;    (Gä) |i

[q; 1
p

] 1

1 (qv) p
       (5.45) 

                                   

36 It is enough to observe that also here , ,H K   H ,K   are the FV of the annuities in the 

invariance period with installments respectively 
( ) ( ) ( )( ) , , ,k k kkH K H  K . 
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 By using q=1, we go back to the values of constant annuities. The usual factors 
are used to obtain the FV and the PVDA In order to obtain the corresponding values 
of the effective annuities, multiply the values in (5.44), (5.44’) or (5.45) for the first 
installment. 

Continuous annuities in geometric progression 

 With continuous flows of payments, it is enough to consider two possibilities 
which, acting on the amplitude of the invariance periods, cover all cases: 

a) continuous constant flow in each year (or more generally in each invariance 
period to which the parameters refer) and variations in GP with ratio q from one 
period to the next; 

b) varying continuous flow in exponential way. 

 The normalized values for case a) are obtained from those of the k-fractional 
annuities with k  (the non-normalized values are obtained by multiplying for the 
total of the first period). By applying the correction factor d/  from (5.34) and (5.41) 
the IV are obtained  

    
(Ga)n|i

[q; ]
 dn /            if  q = 1+i

d[1 (qv)n ]
(1- qv)

 if  q 1+i  
;  (Ga) |i

[q; ] d

(1- qv)
if  q <1+i  (5.46)  

To obtain the normalized values for case b), which give the highest continuity 
degree with k , h , let us first define the variation intensity of continuous flow 
(constant, because the payment flow evolves in an exponential way) given by 

  ln q  which is consistent with the annual ratio q = e . Thus, the evolution of 
the discounted flows is given by e( )t and the IV can be obtained using the 
integral calculus (analogously to the case of constant annuities: see footnote 17) 
obtaining37  

                                   

37 We can write: 
    
V0 = e( )t

0
n

dt =
e( )n 1

 =
(qv)n 1

ln(qv)
,  if  q 1+i ; V0 =n if q = 1+i, 

that implies . Recalling the Taylor series of ln(1+x), it is seen that qv-1 is the linear 
approximation of ln(qv), which is very precise when qv 1. In such cases, the difference 
between the normalized IV of annual annuity and of continuous annuity are negligible; in fact 
the change of deadlines does not bring practical effects because increasing the flow 
compensates the discount.  
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[q]

n i

if  1

(G ) ;( ) 1
if  1

( )

n

 n  ,       q= +i

a qv
,  q +i  

ln qv
|

[q]

i(G ) 1/ ln( ),a qv|  if q < 1+i  (5.46') 

 The IV of a continuous perpetuity in GP in cases a) and b) assume a finite value 
only if q<1+i.  

Exercise 5.16

Calculate the IV and FV at the 4-convertible annual rate = 0.056 on the three-
yearly interval of validity of the contract, of the annuity given by a delayed monthly 
wage of a worker. This wage is set up by a fixed part of €1,700 and by a benefit 
initially at €400 and then increasing at the quarterly ratio of 0.8%. Compare the 
results with those of a continuous annuity with the same financial parameters. 

 
A. It is convenient to assume the quarter period to be unitary and to use: fixed 

part = 5,100; initial benefit =1,200; ratio q=1,008; rate i=0.056/4=0.014; frequency 
of payments k=3; length n=12; thus: v=0.9861933; d/j(3)=0.9907814; 
qv=0.9940828; (qv)12=0.9312595. Using (5.12) and (5.42) the IV is 

V0 = 5,100
  
a

12 |0.014
(3)  + 1,200    

(Ga)
12 |0.014
[1.008;3]

 5,100.11.0267981 + 1,200.11.5099724 = 

56,236.67 + 13,811.97 = 70,048.64 

The FV is 

Vn = 1.01412 V0 = 1.1815591.70,048.64 = 82,766.61 

For comparison, let us calculate, using the same parameters of amount and rate, 
the values in the case of continuous flow with continuous increments. Leaving the 
quarter as the unit measure of time and using (5.16) and (5.46'), the following is 
obtained  

V0 = 5,100
 
a 

12 |0.014
( )  + 1,200    (Ga )12|0.014

[1.008]  5,100.11.0524121 + 1,200.11.5826613 

= 56,367.30 + 13,899.19 = 70,266.50 

Vn = 1.01412 V0 = 1.1815591.70,266.50 = 83,024.02 

The values of the constant continuous unitary annuity are only different by a 
small amount from those of the analogous monthly annuity and this also holds true 
for the varying annuity in GP given that qv = 0.9940828 1 (see footnote 37).  
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Exercise 5.17 

An industrial company works at a plant for which the initial cost of €280,000 is 
already covered, but – expecting an average economic length of 5 years, without 
break-up value and with cost increments for periodic renewal at the annual 
compound rate of 5% – wants to cover the renewal cost in 20 years through 
semiannual delayed payment in a profitable bank fund at the compound rate of 6%. 
Calculate the semiannual payments: 

a) using the hypothesis of constant payments in the 20 years; 

b) using the hypothesis of payments increasing every 5 years in progression 
corresponding to the variation of the annual compound rate of 5%. 

A. Computation of cost of five-yearly renewals: 

– after 5 years: C1 = 280,000(1.05)5 = €357,358.84; 

– after 10 years: C2 = C1(1.05)5 = €456,090.50; 

– after 15 years: C3 = C2 (1.05)5 = €582,099.89; 

– after 20 years: C4 = C3 (1.05)5 = €742,923.36. 
 
The outflows for such costs give rise to a pluriannual annuity-immediate in GP 

with p = 5; n = 20; i = 0.06; ratio qp = 1.055 = 1.2762816, and the IV, due to (5.44), 
is  

V0 = 357,358.84     (Ga)20|0.06
[1.2762816, 1

5]
 = 357,358.84 

20

5 5

1 0.990566

1.06 1.05
 = 

= 357,358.84 . 2.7878276 = €996,254.84 

We now have to find the installments of the annuity to accumulate in the fund 
what is needed for the periodic renewal in the two cases a) and b) specified above. 

Hypothesis a) 

Assuming the year is the unit measure, using i=0.06; n=20; m=2 and using the 
correction factor i1/2/i specified in section 5.2.4, the semiannual delayed installment 
R1/2 to deposit in a fund that provides the payments for the costs C1,...,C4 calculated 
above, is obtained. The following result holds true:  

R1/2 = V0 n |i  i1/2/i = 996,254.84. 0.0871846 . 0.4927169 = €42,796.45 

The values R1/2 form constant outflows so as to balance over the 20 years the 
deposits in a fund with increasing costs; therefore during the 20 years a reserve is 
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formed, equal to the current balance and always to the credit of the depositing 
person and in debt of the institution that is managing the fund (so 6% is always a 
debit rate for this institution). This fund dies away after 20 years, as is confirmed by 
the following scheme of balances at the end of each five-years of the 20 years, 
where the FV of the five-yearly annuity at 6% annual of payments R1/2 is 
489,627.13. In the following table each row refers to a five-year period. 
 

NG. 
 

Existing   
balance 

(1)  

FV of 5- 
year 

payments 
(2) 

Updated 
balance 

(3) = 
(1)+(2) 

Withdraw 
for renewal 

(4) 

Residual of 5 -
year period  

(5) = (3) – (4) 

Fund after 5 
years  

(6)=(5)1.065 

1 0.00  489,627.13 489,627.13 357,358.84 132,268.30 177,004.82 

2 177,004.82 489,627.13 666,631.96 456,090.50 210,541.46 281,751.97 

3 281,751.97 489,627.13 771,379.11 582,099.89 189,279.22 253,298.29 

4 253,298.29 489,627.13 742,925.43 742,923.36 (°)   2.07  

(°) Apparent final balance = 2.07 instead of 0, due to rounding-off.  

Table 5.4. Dynamics of a fund in hypothesis a)  

Hypothesis b) 

In order to form the amount of five-yearly costs for renewal, we now have 
delayed constant semi-annual payments inside each five-year period, increasing 
when passing from one five-year period to the next with the same annual ratio of 
5% with which the renewal costs increase. This implies, as we will verify, the 
balancing between the FV of the payments and the absorption of substitutions, 
already calculated, with consequent lack of residuals and thus zeroing of the reserve 
at the end of each five-year period. We can develop the calculation assuming the 
five-year period as a unit measure of time and solving in respect to K the first 
equation in (5.39), using: H=0; i = (1.06)5-1 = 0.3382256; n=4; V0 = 996254.84. 
This equation becomes 

   
V0 K (Ga)

20 |0.06

[1.2762816; 1
5]

  

from which: K=357,358.84. This value is the equivalent FV of the semiannual 
payments K(10) of the first five-year period, which are obtainable by applying the 
correction factor i1/10/i=0.0973983; therefore, we have K(10)=0.0973983.357,358.84 = 
31,235.38. For the following five-year periods the semiannual payments and their 
five-year period FV increase in GP with ratio 1.2762816 every 5 years. The 
evolution of such payments in the four five-year periods and the verification of the 
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zeroing of residuals are shown in the following table, where each row is referred to 
a five-year period.  
 
N. Existing 

balance 
(1) 

Semiannual 
payment 

(2) 

FV of 5-year 
payments 

(3) 

Withdrawal 
for renewal 

(4) 

Residual of 5-
year period 

(5)=(3) – (4) 

Fund after  
5 years  

(6)=(5)1,06 

1 0 31,235.38 357,358.84 357,358.84 0 0 

2 0 39,865.14 456,090.50 456,090.50 0 0 

3 0 50,879.15 582,099.89 582,099.89 0 0 

4 0 64,936.12 742,923.36 742,923.36 0 0 

Table 5.5. Dynamics of a fund in hypothesis b) 

Also in hypothesis b), the fund is never in credit because, due to the semiannual 
payments, it remains in debt inside each five-year period, but becomes 0 at its end 
and remains 0 during the first following half-year. 

Exercise 5.18 

1) Recall the second problem of exercise 5.15, which considers a temporary 
annual annuity-due in GP; using the same data let us consider the following 
variations:  

a) annually varying continuous flow with the same progression; 

b) continuous flow with continuous increments, given by e t, with  = ln 1.09, 
discounted according to the intensity  = ln 1.06. 

A. Case a) The annual installment is substituted for the constant annual flow, 
equal to €7,157.35 during the 1st year, afterward in GP at 9% for 10 years, all 
evaluated in the compound regime with i = 6%. Due to (5.46), the IV is obtained by 
applying the correction factor d/  = 0.9714233 to that of the annual case. We obtain: 
V0 = 7157.35.11.0495810 = 79,085.72. The FV is given by: V10 = V0(1.06)10 = 
79085.72.1.7908477 = 141,630.48.  

A. Case b) By applying (5.46’), IV=
10

0

1.09 /1.06 1
7,157.35

ln 1.09 /1.06
V  

 
= 

7,157.35.11.5348438 = 82,558.91 is obtained, and also FV = V10 = V0(1.06)10 = 

82,558.91.1.7908477 = 147,850.44. 

Compare the results obtained here with those from the second part of Exercise 
5.15. 
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2) Calculate the IV for the normalized annuities as in part 2 of exercise 5.15 and 
part 1 of exercise 5.18, but assuming q = 1.03. 

A. Using the formulae already discussed, the normalized IV are summarized in 
the following table. 
 

Type of payment of the annuity temporary (10 years) perpetuity 

Advance annual payments 8.8179309 35.3332994 

Continuous flow with annual increments 8.5659496 34.3236102 

Continuous flow with continuous increments 8.6925517 34.8309069 

 

Table 5.6. Calculation of the normalized IV 

5.5. Evaluation of varying installment annuities according to linear laws   

5.5.1. General case  

Also varying installments are often used for short periods linear exchange laws. 
Let us find here the IV and FV at time s of a m-fractional annuity with varying 
installments, considering again the symbols and assumptions of section 5.3, but 
indicating with Rh the hth delayed installment and with hR  the hth advance 
installment. Such annuities are the operations ˆ O  for which the supplies are (h/m, 
Rh) in the delayed case and ((h-1)/m, hR ) in the advance case. 

Therefore, if the payments are delayed, the IV according to the SD law at rate d 
and the FV in s according to the SDI law at rate i are given, respectively, by  

V0 Rh 1 d 
h

mh 1

s ; Vs Rh 1 i
s h

mh 1

s        (5.47) 

However, if the payments are in advance, the IV, according to the SD law at rate 
d and the FV in s according to the SDI law at rate i, are given, respectively, by 

V0 Rh 1 d 
h

mh 1

s

  ;   
Vs Rh 1 i

s h

mh 1

s

  (5.47') 
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Equations (5.47) and (5.47') solve the already-mentioned direct problem 
(installment value)38, but we also have to consider here the inverse problem 
(value installment) to solve amortization and accumulation calculus with varying 
installments according to linear laws. We have to consider that, as opposed to what 
we have seen in section 5.3, with constant installments where there is always a 
unique solution for the installment, here the variability of the installments usually 
leads to infinite solutions. The problem becomes determinate, and thus has a unique 
solution due to the linearity of the installment in (5.47) and (5.47'), only if the 
number of constraints between the installments at different maturities is enough to 
cancel out that of the degrees of freedom; i.e. s-1 further constraints in addition to 
(5.47) or (5.47'). This is obtained, in particular, imposing that the installments 
evolve in AP or in GP 

5.5.2. Specific cases: annuities in arithmetic progression  

 Let us consider annuities in AP using 

h hR  = R   = H+D h                  (5.48) 

Under the hypothesis of h hR =R =h  (i.e. H=0, D=1 in (5.48)) the IV of the 
unitary annuity in AP -immediate or -due, i.e. of the increasing annuity with SD 
law, are obtained39 and expressed respectively by 

Is
(m ) h 1 d

h

mh 1
n s(s 1)

2
1 d

2s 1
3m          (5.49) 

2
( )

1

1 ( 1) 1
1 1

2 3

nm
s h

h s s s
I h d d

m m
       (5.49') 

Thus for the IV of annuities with delayed or advance installments given in (5.48) 
the following is easily obtained, from the 1st part of (5.47) and (5.47'), 

                                   
38 We only consider the IV and FV of a temporary annuity because: 1) due to the short 
application interval of the linear law it is not relevant to consider perpetuities; 2) for the same 
reason the PVDA are not important; furthermore, given the decomposability of the SD law, 
the PVDA is not obtained from the IV applying the discount; a direct calculation is needed. 

39 We will use here: h2 n(n 1)(2n 1)
6h 1

n , h(h 1) =
n(n2 1)

3h 1
n . 
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( )
0 1

1 1 2 1
1 1 1

2 2 3

s m
sh

h s s s
V H d D I s H d D d

m m m
  

(5.50) 

( ) 2
0 1

( 1 ( 1) ( 1)
1 1 ( 1)

2 2 3

s m
sh

d h- ) d s s d
V H D I s H D s

m m m
 (5.50') 

For the FV of the aforementioned annuities, from the 2nd part of (5.47) and (5.47') 
the following is obtained 

1
11 1

1 1 1
2 2 3

s
s h

s ss h i s s
V H Dh i sH s D i

m m m
  

 (5.51) 

1

1 1 ( 1) 2
( ) 1 1 1

2 2 3

s

hs
s h s s s s

V H D h i sH i D i
m m m

  (5.51') 

Exercise 5.19 

Calculate the IV and FV in the -immediate and -due case, of an annuity formed 
by 15 monthly payments, the first one of €6,500 and the following payments 
varying in arithmetic progression with a ratio of €150, evaluating with linear laws 
and equivalent rates at the annual discount rate of 6.4%. Consider the inverse 
problem for amortization and accumulation. 

A. The IV of the annuity-immediate is obtained by applying (5.50) with: 
H=6,350; D=150; m=12; s=15, d=0.064. 

0

16 16 31
15 6, 350 1 0.064 150 1 0.064

24 2 36
V  = 91,186 +17,008 = 108,194.00 

The IV of the annuity-due is obtained by applying (5.50') with: H=6,350; 
D=150; m=12; s=15; d=0.064. The result is: 

0

16 16 224
15 6,350 1 0.064 150 0.064

24 2 36
V = 91,694 +17,104 = 108,798.00 

The FV of the annuity-immediate is obtained by applying (5.51) with: H=7,100; 
D=160; m=12; s=15; i = 0.064/0.936 = 0.0683761. The result is: 
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15

0.0683761 16 16 14
15 6, 350 1 15 150 1 0.0683761

12 2 2 36
V  = 117,527.78 

The FV of the annuity-due is obtained by applying (5.51') with: H=7,100; 
D=160; m=12; s=15; i = 0.064/0.936 = 0.068376. The result is: 

15

16 16 17
15 6,350 1 0.0683761 150 1 0.0683761

24 2 36
V  = 118,173.08 

For the inverse problem, let us observe that the percentage ratio in the first 
installment is: = D/(H+D) = 0.0230769. Therefore, if we want to amortize, using 
an SD law, the debt of €108,194 by 15 increasing delayed monthly installments in 
AP at 2.30769% of the first installment, this and thus all payments are found to 
solve the system formed by two equations: (5.50), with the given parameters and V0 
= 108194, and D = 0.0230769(H+D), in the two unknowns H and D. The result is: 
H = 6350, D = 150, from which the first installment is 6,500 and the other increase 
by 150 per month. The same installments, if paid at the beginning instead of the end 
of each month, are consistent to amortize a debt of €108,798, as we see using (5.50') 
with 0V  = 108,798. 

 
Proceeding analogously using (5.51) and (5.51'), we can see that, with SDI law 

at the rate of 6.83761%, the same 15 monthly installments form a final capital of 
€117,527.78 if delayed, or of €118,173.08 if advance. 

5.5.3. Specific cases: annuities in geometric progression 

Let us consider the problems of section 5.5.2 using fractional annuities in GP, 
writing the installments in the form 

1h
h hR R R q                 (5.52) 

where R is the first installment, m is the frequency, s is the total number of 
installments and q is the ratio of the GP. Using: 

    
Gs k q k

k 0
s 1 ( s 1)q s

q 1
q s 1

(q 1)2
           (5.53) 
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the IV of the annuity-due with SD law at the rate d and with installments written in 
(5.52) is given, according to (5.53), by 

1

0 0

1
1

1
k

k

ss
s

k q d
V R q d R G

m q m
         (5.54) 

For the IV of the annuity-immediate with installments in (5.52), for comparison 
with (5.54), we obtain:  

1
0 01

1
1

1
h

h

ss h d q
V R q d V R 

m m q
  

and therefore40  

0

1
1

1

s

s
d q d

V R G
m q m

             (5.54') 

With similar development as above, the FV of the annuity-due with installments 
(5.52), according to the SDI law with rate i, is obtained. It follows that  

1

0

1
1 ( ) 1

1
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ss
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i is q i
V R q  s - k R G

m m q m
    (5.55) 

Comparing with (5.55), we obtain 

1
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and thus 

                                   

40 Observe that V0 is the arithmetic mean of R
qs 1
q 1

 and -RGs .  
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Vs R 1
i( s 1)

m
q s 1
q 1

i
m

Gs             (5.55') 

Exercise 5.20 

A small loan is amortized over a short period according to a SD law with 
monthly advance installments in GP. Let us assume the following parameters:  

– initial installment R = €650; 

– variation monthly rate = 1.2%; 

– annual discount rate for the amortization = 5.60%; 

– number of monthly rate s = 10. 
 
Calculate the debt to amortize and, also, the debt in the case of delayed 

installments. 

A. Due to (5.53), (5.54) and (5.54') we have 

10  10

10  2

9 1,012 1,012 1
47.9724838 

0,012 (0,012)
G ; 

0 650 9.4443164 0.2238716 5,993.29V   

0 650 (0.9953333 9.4443164 0.2238716 ) 5,964.64 V  

Obviously, if we assign, with the rate, time and ratio given above, 

a) the debt of 5,993.29 to amortize with monthly advance payments; 

b) the debt of 5,964.64 to amortize with monthly delayed installments,  

the given installments would be found as a solution. 

Exercise 5.21 

An industrial company, with increasing turnover, has to replace an old plant over 
a short period of time. To partially finance the replacement they are able to deposit, 
at the beginning of every quarter, amounts increasing at 2.5%, the first of which is 
€6,900, into a savings account with SDI law at 6% per year, for 9 months. Calculate 
the final balance of the account. Also, calculate in the case of delayed payments. 

A. s = 3; q = 1.025. Due to (5.53), (5.55) and (5.55')  
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G3

2 1.025 3

0.025
1.025 3 1

0.025 2
36.87375  

  V3 6900 (1.03 3.0756250 + 0.5531062) = 25,674.90 

Obviously if we assign, with the rate, time and ratio given above, the capital of 
25,993.23 to accumulate with quarterly advance installments, or the capital of 
25674.90 to accumulate with quarterly delayed installments, the given installments 
would be found as solution. 

 
       


